Solveeit Logo

Question

Question: The equ $px^2+qx+r=0$ and $x^3-3x^2+3x+2=0$ have two roots in common then...

The equ px2+qx+r=0px^2+qx+r=0 and x33x2+3x+2=0x^3-3x^2+3x+2=0 have two roots in common then

A

p=q≠r

B

p≠q=r

C

p≠q≠r

D

p=q=r

Answer

p≠q≠r

Explanation

Solution

The cubic equation is x33x2+3x+2=0x^3-3x^2+3x+2=0. This can be written as (x1)3+3=0(x-1)^3 + 3 = 0, so (x1)3=3(x-1)^3 = -3. The roots are x1=133x_1 = 1 - \sqrt[3]{3}, x2=133ωx_2 = 1 - \sqrt[3]{3}\omega, and x3=133ω2x_3 = 1 - \sqrt[3]{3}\omega^2, where ω\omega is a complex cube root of unity. The quadratic px2+qx+r=0px^2+qx+r=0 has two roots in common. Assuming real coefficients for p,q,rp, q, r, these common roots must be a complex conjugate pair. Thus, the roots are x2x_2 and x3x_3. The sum of these roots is x2+x3=233(ω+ω2)=2+33x_2+x_3 = 2 - \sqrt[3]{3}(\omega+\omega^2) = 2 + \sqrt[3]{3}. The product of these roots is x2x3=133(ω+ω2)+3=4+33x_2x_3 = 1 - \sqrt[3]{3}(\omega+\omega^2) + 3 = 4 + \sqrt[3]{3}. The quadratic equation is proportional to x2(2+33)x+(4+33)=0x^2 - (2+\sqrt[3]{3})x + (4+\sqrt[3]{3}) = 0. So, p=kp=k, q=k(2+33)q=-k(2+\sqrt[3]{3}), r=k(4+33)r=k(4+\sqrt[3]{3}) for some k0k \neq 0. Since 33\sqrt[3]{3} is irrational, 2+3312+\sqrt[3]{3} \neq -1, 4+3314+\sqrt[3]{3} \neq 1, and (2+33)4+33-(2+\sqrt[3]{3}) \neq 4+\sqrt[3]{3}. Therefore, pqp \neq q, prp \neq r, and qrq \neq r, which means pqrp \neq q \neq r.