Solveeit Logo

Question

Question: The equ $px^2+qx+r=0$ and $x^3-3x^2+3x+2=0$ have two roots in common then...

The equ px2+qx+r=0px^2+qx+r=0 and x33x2+3x+2=0x^3-3x^2+3x+2=0 have two roots in common then

A

p=q≠r

B

p≠q=r

C

p≠q≠r

D

p=q=r

Answer

p=q≠r

Explanation

Solution

Let the two equations be: (1) px2+qx+r=0px^2+qx+r=0 (2) x33x2+3x+2=0x^3-3x^2+3x+2=0

Rewrite equation (2) as (x1)3+3=0(x-1)^3 + 3 = 0, which gives (x1)3=3(x-1)^3 = -3. Let y=x1y = x-1. Then y3=3y^3 = -3. The roots for yy are k,kω,kω2k, k\omega, k\omega^2, where kk is a cube root of 3-3 and ω\omega is a complex cube root of unity. The roots for xx are 1+k,1+kω,1+kω21+k, 1+k\omega, 1+k\omega^2. Since the coefficients of the quadratic equation are real, its two common roots with the cubic equation must be the complex conjugate pair: α=1+kω\alpha = 1+k\omega and β=1+kω2\beta = 1+k\omega^2.

Using Vieta's formulas for px2+qx+r=0px^2+qx+r=0: Sum of roots: α+β=(1+kω)+(1+kω2)=2+k(ω+ω2)=2+k(1)=2k\alpha + \beta = (1+k\omega) + (1+k\omega^2) = 2 + k(\omega+\omega^2) = 2 + k(-1) = 2-k. So, q/p=2k-q/p = 2-k.

Product of roots: αβ=(1+kω)(1+kω2)=1+k(ω+ω2)+k2ω3=1+k(1)+k2(1)=1k+k2\alpha\beta = (1+k\omega)(1+k\omega^2) = 1 + k(\omega+\omega^2) + k^2\omega^3 = 1 + k(-1) + k^2(1) = 1-k+k^2. So, r/p=1k+k2r/p = 1-k+k^2.

From q/p=2k-q/p = 2-k, we get k=2+q/pk = 2+q/p. Substitute this into r/p=1k+k2r/p = 1-k+k^2: r/p=1(2+q/p)+(2+q/p)2r/p = 1 - (2+q/p) + (2+q/p)^2 r/p=1q/p+4+4q/p+q2/p2r/p = -1 - q/p + 4 + 4q/p + q^2/p^2 r/p=3+3q/p+q2/p2r/p = 3 + 3q/p + q^2/p^2 Multiply by p2p^2: rp=3p2+3pq+q2rp = 3p^2 + 3pq + q^2.

Check option Ⓐ (p=qrp=q \neq r): If p=qp=q, the equation becomes rp=3p2+3p(p)+p2=7p2rp = 3p^2 + 3p(p) + p^2 = 7p^2. Since p0p \neq 0, we can divide by pp: r=7pr = 7p. This means p=qp=q and r=7pr=7p. If p0p \neq 0, then prp \neq r. Thus, p=qrp=q \neq r is consistent.