Solveeit Logo

Question

Chemistry Question on Thermodynamics

The enthalpy of formation of CO(g),CO2(g),N2O(g)CO_{\left(g\right),} CO_{2\left(g\right)}, N_{2}O_{\left(g\right)} and N2O4(g)N_{2}O_{4\left(g\right)} is -110, -393, +811 and 10 kj/mol respectively. For the reaction, N2O4(g)+3CO(g)N2O(g)+3CO2(g).ΔHr(kJ/mol)N_{2}O_{4\left(g\right)}+3CO_{\left(g\right)}\to N_{2}O_{\left(g\right)}+3CO_{2\left(g\right)}.\Delta H_{r} \left(kJ/mol\right) is

A

-212

B

212

C

48

D

-48

Answer

-48

Explanation

Solution

N2O4(g)+3CO(g)>N2O(g)+3CO2(g) {N2O4_{(g)} + 3CO_{(g)} ->N2O_{(g)} + 3CO2_{(g)}} ΔHreaction=Heat of formation of productsHeat of formation of reactants\Delta H_{\text{reaction} }= \sum_{\text{Heat of formation of products} }-\sum_{\text{Heat of formation of reactants}} ΔHreaction=[ΔHfN2O+3×ΔHfCO2][ΔHfN2O4+3×ΔHfCO]\Delta H_{\text{reaction} }=\left[\Delta H_{f} N_{2}O+3\times\Delta H_{f} CO_{2}\right]-\left[\Delta H_{f} N_{2}O_{4}+3\times \Delta H_{f} CO\right] ΔHr=[+811+3(393)][10+3(110)]\Delta H_{r}=\left[+811+3\left(-393\right)\right]-\left[10+3\left(-110\right)\right] =[8111179][320]=368+320=\left[811-1179\right]-\left[-320\right]=-368+320 =48kJ/mol=-48\, kJ/mol