Solveeit Logo

Question

Physics Question on Kinetic Energy

The energy required to take a satellite to a height h'h' above Earth surface (radius of Earth = 6.4×103  km)6.4 \times 10^3 \; km) is E1E_1 and kinetic energy required for the satellite to be in a circular orbit at this height is E2E_2. The value of hh for which E1E_1 and E2E_2 are equal, is:

A

1.28×104  km1.28 \times 10^4 \; km

B

6.4×103  km6.4 \times 10^3 \; km

C

3.2×103  km3.2 \times 10^3 \; km

D

1.6×103  km1.6 \times 10^3 \; km

Answer

3.2×103  km3.2 \times 10^3 \; km

Explanation

Solution

Usurface+E1=UhU_{surface} + E_1 = U_h KEKE of satelite is zero at earth surface & at height h GMemRe+E1=GMem(Re+h)- \frac{GM_{e}m}{R_{e}} + E_{1} = - \frac{GM_{e}m}{\left(R_{e}+h\right)} E1=GMem(1Re1Re+h)E_{1} =GM_{e}m \left( \frac{1}{R_{e}} - \frac{1}{R_{e} +h}\right) E1=GMem(Re+h)×hReE_{1} = \frac{GM_{e}m}{\left(R_{e} +h\right)} \times\frac{h}{R_{e}} Gravitational attraction FG=maC=mv2(Re+h)F_{G} = ma_{C} = \frac{mv^{2}}{\left(R_{e} +h\right)} E2mv2(Re+h)=GMem(Re+h)2E_{2 } \Rightarrow \frac{mv^{2}}{\left(R_{e} +h\right)} = \frac{GM_{e}m}{\left(R_{e} + h\right)^{2}} mv2=GMem(Re+h)mv^{2} = \frac{GM_{e}m}{\left(R_{e} +h\right) } E2=mv22=GMem2(Re+h)E_{2} = \frac{mv^{2}}{2} = \frac{GM_{e}m}{2 \left(R_{e} + h\right)} E1=E2E_{1} =E_{2} hRe=12h=Re2=3200km \frac{h}{R_{e}} = \frac{1}{2} \Rightarrow h = \frac{R_{e}}{2} = 3200 \, km