Solveeit Logo

Question

Physics Question on Nuclear physics

The energy released in the fusion of 2 kg of hydrogen deep in the sun is EHE_H and the energy released in the fission of 2 kg of 235U^{235}U is EUE_U. The ratio EHEU\frac{E_H}{E_U} is approximately:

A

9.13

B

15.04

C

7.62

D

25.6

Answer

7.62

Explanation

Solution

In each fusion reaction, 4 nuclei of 1H^1H are used. Energy released per nucleus of 1H^1H:

Energy per nucleus=26.74MeV.\text{Energy per nucleus} = \frac{26.7}{4} \, \text{MeV}.

Energy released by 2 kg of hydrogen (EHE_H):

EH=20001×NA×26.74MeV.E_H = \frac{2000}{1} \times N_A \times \frac{26.7}{4} \, \text{MeV}.

Energy released by 2 kg of uranium (EUE_U):

EU=2000235×NA×200MeV.E_U = \frac{2000}{235} \times N_A \times 200 \, \text{MeV}.

Taking the ratio EHEU\frac{E_H}{E_U}:

EHEU=20001×NA×26.742000235×NA×200.\frac{E_H}{E_U} = \frac{\frac{2000}{1} \times N_A \times \frac{26.7}{4}}{\frac{2000}{235} \times N_A \times 200}.

Simplify:

EHEU=235×26.74200.\frac{E_H}{E_U} = \frac{235 \times \frac{26.7}{4}}{200}.

Further simplify:

EHEU=235×26.74×200=6274.58007.84.\frac{E_H}{E_U} = \frac{235 \times 26.7}{4 \times 200} = \frac{6274.5}{800} \approx 7.84.

Thus:

EHEU7.62.\frac{E_H}{E_U} \approx 7.62.

Final Answer: 7.62