Solveeit Logo

Question

Question: The energy of an electron in the nth orbit of positronium is –...

The energy of an electron in the nth orbit of positronium is –

A

13.6n2\frac{13.6}{n^{2}}eV

B

13.6×2n2\frac{13.6 \times 2}{n^{2}}eV

C

13.6×4n2\frac{13.6 \times 4}{n^{2}}eV

D

13.62n2\frac{13.6}{2n^{2}}eV

Answer

13.62n2\frac{13.6}{2n^{2}}eV

Explanation

Solution

Energy En of an electron in nth orbit of positronium (a bound system composed of positron and an electron) is given by:

En= –(14πε0)2\left( \frac{1}{4\pi\varepsilon_{0}} \right)^{2}(mMm+M)\left( \frac{mM}{m + M} \right)

where M = mass of positron

Here, M = m

\En= – (14πε0)2\left( \frac { 1 } { 4 \pi \varepsilon _ { 0 } } \right) ^ { 2 } 2π2e4n2h2\frac{2\pi^{2}e^{4}}{n^{2}h^{2}}×m2\frac{m}{2}

=(9×109)2×2×(22/7)2×(1.6×1019)2×(9.1×1031)2n2(6.6×1034)2\frac{(9 \times 10^{9})^{2} \times 2 \times (22/7)^{2} \times (1.6 \times 10^{- 19})^{2} \times (9.1 \times 10^{- 31})}{2n^{2}(6.6 \times 10^{- 34})^{2}}

= –(13.6)×(1.6×1019)2n2\frac{(13.6) \times (1.6 \times 10^{- 19})}{2n^{2}}joule = –13.62n2\frac{13.6}{2n^{2}}eV