Solveeit Logo

Question

Question: The energy corresponding to one of the lines in the Paschen series for $He^+$ ion is $4.25 \times 10...

The energy corresponding to one of the lines in the Paschen series for He+He^+ ion is 4.25×10194.25 \times 10^{-19} J. Find the principle quantum number for the transition which produces this line. (Take RH=1.1×107m1R_H = 1.1 \times 10^7 m^{-1})

Answer

4

Explanation

Solution

For a hydrogen-like ion, the Rydberg formula is

1λ=Z2RH(1nf21ni2)\frac{1}{\lambda}=Z^2R_H\left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)

In the Paschen series, the final level is nf=3n_f=3 and for He+He^+ the nuclear charge is Z=2Z=2.

The energy of the photon is given by

E=hcλEhc=1λE=\frac{hc}{\lambda}\quad \Longrightarrow\quad \frac{E}{hc} = \frac{1}{\lambda}

Substitute into the Rydberg formula:

Ehc=Z2RH(1321ni2)\frac{E}{hc}=Z^2R_H\left(\frac{1}{3^2}-\frac{1}{n_i^2}\right)

Plug in the values:

4.25×10196.626×1034×3×108=4×(1.1×107)(191ni2)\frac{4.25\times10^{-19}}{6.626\times10^{-34}\times3\times10^8} = 4\times(1.1\times10^7)\left(\frac{1}{9}-\frac{1}{n_i^2}\right)

Compute the left side (noting that 6.626×36.626\times 3 approximates a factor used in the hint):

4.25×10191.9878×10252.14×106m1\frac{4.25\times10^{-19}}{1.9878\times10^{-25}} \approx 2.14\times10^6 \, \text{m}^{-1}

Now, the right side:

4×1.1×107=4.4×107m14\times1.1\times10^7 = 4.4\times10^7 \, \text{m}^{-1}

Thus,

2.14×106=4.4×107(191ni2)2.14\times10^6 = 4.4\times10^7\left(\frac{1}{9}-\frac{1}{n_i^2}\right)

Solving for the term in parentheses:

191ni2=2.14×1064.4×1070.0486\frac{1}{9}-\frac{1}{n_i^2} = \frac{2.14\times10^6}{4.4\times10^7} \approx 0.0486

So,

1ni2=190.04860.11110.0486=0.0625\frac{1}{n_i^2} = \frac{1}{9} - 0.0486 \approx 0.1111 - 0.0486 = 0.0625

Finally,

ni2=10.0625=16ni=4.n_i^2 = \frac{1}{0.0625} = 16 \quad \Longrightarrow \quad n_i=4.

Core Explanation

  • Use the Rydberg formula for hydrogen-like ions.
  • For Paschen series, nf=3n_f=3, and for He+He^+, Z=2Z=2.
  • Equate the expression for Ehc\frac{E}{hc} with the Rydberg formula and solve for nin_i.
  • Calculation yields ni=4n_i = 4.

The transition is from ni=4n_i=4 to nf=3n_f=3.