Solveeit Logo

Question

Question: The ends of a line segment are \(P Q : Q R = 1 : \lambda\). If R is an interior point of the parabol...

The ends of a line segment are PQ:QR=1:λP Q : Q R = 1 : \lambda. If R is an interior point of the parabola y2=4xy ^ { 2 } = 4 x, then

A

λ(0,1)\lambda \in ( 0,1 )

B

λ(35,1)\lambda \in \left( - \frac { 3 } { 5 } , 1 \right)

C

λ(12,35)\lambda \in \left( \frac { 1 } { 2 } , \frac { 3 } { 5 } \right)

D

None of these

Answer

λ(0,1)\lambda \in ( 0,1 )

Explanation

Solution

R=(1,1+3λ1+λ)R = \left( 1 , \frac { 1 + 3 \lambda } { 1 + \lambda } \right) It is an interior point of y24x=0y ^ { 2 } - 4 x = 0

if (1+3λ1+λ)24<0\left( \frac { 1 + 3 \lambda } { 1 + \lambda } \right) ^ { 2 } - 4 < 0

(1+3λ1+λ2)(1+3λ1+λ+2)<0\left( \frac { 1 + 3 \lambda } { 1 + \lambda } - 2 \right) \left( \frac { 1 + 3 \lambda } { 1 + \lambda } + 2 \right) < 0(λ11+λ)(5λ+31+λ)<0\left( \frac { \lambda - 1 } { 1 + \lambda } \right) \left( \frac { 5 \lambda + 3 } { 1 + \lambda } \right) < 0

(λ1)(λ+35)<0( \lambda - 1 ) \left( \lambda + \frac { 3 } { 5 } \right) < 0

Therefore, 35<λ<1- \frac { 3 } { 5 } < \lambda < 1 . But λ>0\lambda > 0 0<λ<1λ(0,1)\therefore 0 < \lambda < 1 \Rightarrow \lambda \in ( 0,1 )