Solveeit Logo

Question

Mathematics Question on Conic sections

The end points of the major axis of an ellipse are (2, 4) and (2,-8). If the distance between foci of this ellipse is 4, then the equation of the ellipse is

A

(x2)232+(y+2)236=1\frac{(x-2)^2}{32}+\frac{(y+2)^2}{36}=1

B

(x4)232+(y+2)236=1\frac{(x-4)^2}{32}+\frac{(y+2)^2}{36}=1

C

(x2)236+(y+2)232=1\frac{(x-2)^2}{36}+\frac{(y+2)^2}{32}=1

D

(x2)232+(y4)236=1\frac{(x-2)^2}{32}+\frac{(y-4)^2}{36}=1

E

(x2)236+(y4)232=1\frac{(x-2)^2}{36}+\frac{(y-4)^2}{32}=1

Answer

(x2)232+(y+2)236=1\frac{(x-2)^2}{32}+\frac{(y+2)^2}{36}=1

Explanation

Solution

The correct option is (A) : (x2)232+(y+2)236=1\frac{(x-2)^2}{32}+\frac{(y+2)^2}{36}=1