Solveeit Logo

Question

Question: The end points of a diameter of a sphere are P(1, 2, 3) and Q(5, 0, -1). Then the coordinates of the...

The end points of a diameter of a sphere are P(1, 2, 3) and Q(5, 0, -1). Then the coordinates of the point on the sphere farthest from the origin is

A

(2+817,3+217,3+217)(2 + \frac{8}{\sqrt{17}}, 3 + \frac{2}{\sqrt{17}}, 3 + \frac{2}{\sqrt{17}})

B

(9+317,5+217,7+217)(9 + \frac{3}{\sqrt{17}}, 5 + \frac{2}{\sqrt{17}}, 7 + \frac{2}{\sqrt{17}})

C

(5+211,5+211,3+211)(5 + \frac{2}{\sqrt{11}}, 5 + \frac{2}{\sqrt{11}}, 3 + \frac{2}{\sqrt{11}})

D

(3+911,1+311,1+311)(3 + \frac{9}{\sqrt{11}}, 1 + \frac{3}{\sqrt{11}}, 1 + \frac{3}{\sqrt{11}})

Answer

(3+911,1+311,1+311)(3 + \frac{9}{\sqrt{11}}, 1 + \frac{3}{\sqrt{11}}, 1 + \frac{3}{\sqrt{11}})

Explanation

Solution

  1. Find the center and radius of the sphere: The center of the sphere C is the midpoint of the diameter PQ. C=(1+52,2+02,3+(1)2)=(62,22,22)=(3,1,1)C = \left(\frac{1+5}{2}, \frac{2+0}{2}, \frac{3+(-1)}{2}\right) = \left(\frac{6}{2}, \frac{2}{2}, \frac{2}{2}\right) = (3, 1, 1).

The radius rr is half the length of the diameter PQ. Diameter length d=(51)2+(02)2+(13)2=42+(2)2+(4)2=16+4+16=36=6d = \sqrt{(5-1)^2 + (0-2)^2 + (-1-3)^2} = \sqrt{4^2 + (-2)^2 + (-4)^2} = \sqrt{16 + 4 + 16} = \sqrt{36} = 6. So, the radius is r=62=3r = \frac{6}{2} = 3.

  1. Find the point on the sphere farthest from the origin: The point on the sphere farthest from the origin lies on the line passing through the origin O(0,0,0) and the center of the sphere C(3,1,1). This point is located at a distance rr from the center C, on the side away from the origin.

The vector from the origin to the center is OC=(30,10,10)=(3,1,1)\vec{OC} = (3-0, 1-0, 1-0) = (3, 1, 1). The magnitude of this vector is OC=32+12+12=9+1+1=11|\vec{OC}| = \sqrt{3^2 + 1^2 + 1^2} = \sqrt{9 + 1 + 1} = \sqrt{11}.

The unit vector in the direction of OC\vec{OC} is u^OC=OCOC=(311,111,111)\hat{u}_{OC} = \frac{\vec{OC}}{|\vec{OC}|} = \left(\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right).

The coordinates of the point X on the sphere farthest from the origin are given by: OX=OC+ru^OC\vec{OX} = \vec{OC} + r \cdot \hat{u}_{OC} OX=(3,1,1)+3(311,111,111)\vec{OX} = (3, 1, 1) + 3 \cdot \left(\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right) OX=(3,1,1)+(911,311,311)\vec{OX} = (3, 1, 1) + \left(\frac{9}{\sqrt{11}}, \frac{3}{\sqrt{11}}, \frac{3}{\sqrt{11}}\right) OX=(3+911,1+311,1+311)\vec{OX} = \left(3 + \frac{9}{\sqrt{11}}, 1 + \frac{3}{\sqrt{11}}, 1 + \frac{3}{\sqrt{11}}\right).