Solveeit Logo

Question

Question: The EMF of the given cell is? $Pt_{(s)}, H_{2(g)}|HCl(aq.10^{-5}M)||H_2O_{(l)}|H_{2(g)},Pt_{(s)}$ is...

The EMF of the given cell is? Pt(s),H2(g)HCl(aq.105M)H2O(l)H2(g),Pt(s)Pt_{(s)}, H_{2(g)}|HCl(aq.10^{-5}M)||H_2O_{(l)}|H_{2(g)},Pt_{(s)} is: [Given: 2.303RTF0.06\frac{2.303RT}{F}-0.06]

A

-0. 06 V

B

-0. 12 V

C
  1. 06 V
D
  1. 12 V
Answer

-0. 12 V

Explanation

Solution

The given electrochemical cell notation is: Pt(s),H2(g)HCl(aq.105M)H2O(l)H2(g),Pt(s)Pt_{(s)}, H_{2(g)}|HCl(aq.10^{-5}M)||H_2O_{(l)}|H_{2(g)},Pt_{(s)}

This represents a concentration cell involving two hydrogen electrodes. The left half-cell has a hydrogen ion concentration [H+]1=105M[H^+]_1 = 10^{-5}M. The right half-cell, being pure water, has a hydrogen ion concentration [H+]2=107M[H^+]_2 = 10^{-7}M.

The Nernst equation for a hydrogen electrode is: E=E02.303RTnFlog1[H+]E = E^0 - \frac{2.303RT}{nF} \log \frac{1}{[H^+]} Since E0=0E^0 = 0 for a hydrogen electrode and n=1n=1 for H+H^+ ion concentration: E=2.303RTFlog1[H+]=2.303RTFlog[H+]E = - \frac{2.303RT}{F} \log \frac{1}{[H^+]} = \frac{2.303RT}{F} \log [H^+]

Let E1E_1 be the potential of the left half-cell and E2E_2 be the potential of the right half-cell. E1=2.303RTFlog(105)E_1 = \frac{2.303RT}{F} \log (10^{-5}) E2=2.303RTFlog(107)E_2 = \frac{2.303RT}{F} \log (10^{-7})

The cell notation indicates that the left half-cell is the anode and the right half-cell is the cathode. The EMF of the cell is Ecell=EcathodeEanode=E2E1E_{cell} = E_{cathode} - E_{anode} = E_2 - E_1. Ecell=(2.303RTFlog(107))(2.303RTFlog(105))E_{cell} = \left(\frac{2.303RT}{F} \log (10^{-7})\right) - \left(\frac{2.303RT}{F} \log (10^{-5})\right) Ecell=2.303RTF(log107log105)E_{cell} = \frac{2.303RT}{F} (\log 10^{-7} - \log 10^{-5}) Ecell=2.303RTF(log107105)E_{cell} = \frac{2.303RT}{F} (\log \frac{10^{-7}}{10^{-5}}) Ecell=2.303RTF(log102)E_{cell} = \frac{2.303RT}{F} (\log 10^{-2}) Ecell=2.303RTF(2)E_{cell} = \frac{2.303RT}{F} (-2)

Given 2.303RTF=0.06\frac{2.303RT}{F} = 0.06 V. Substituting this value: Ecell=(0.06 V)×(2)=0.12 VE_{cell} = (0.06 \text{ V}) \times (-2) = -0.12 \text{ V}