Solveeit Logo

Question

Mathematics Question on Conic sections

The ellipse E1:x29+y24E_1 : \frac{x^2}{9} + \frac{y^2}{4} = 1 is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E2E_2 passing through the point (0, 4) circumscribes the rectangle R. The eccentricity of the ellipse E2E_2 is

A

22 \frac{ \sqrt 2}{ 2}

B

32 \frac{ \sqrt 3}{ 2}

C

12 \frac{1}{2}

D

34 \frac{ 3}{ 4}

Answer

12 \frac{1}{2}

Explanation

Solution

PLAN Equation of an ellipse is
\hspace10mm \frac{x^2}{a^2} + \frac {y^2}{b^2} = 1 \hspace10mm \because [a > b]
Eccentricity, \hspace15mm{e^2} = 1 - \frac{b^2}{a^2}\hspace10mm \because [a > b]
D escription Situation As ellipse circumscribes the rectangle, then it must pass through all four vertices.
Let the equation of an ellipse E2E_2 be
\hspace 15mm \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, where a < b and b = 4.
x2a2+x2a2=1\frac{x^2}{a^2}+\frac{x^2}{a^2}=1, where a < b and 6=4.
{\implies}\hspace15mm \frac{9}{a^2} + \frac{4}{b^2} = 1\hspace12mm [\because b=4]
{\implies}\hspace15mm \frac{9}{a^2} + \frac{1}{4} = 1\, or\, a^2 = 12
Eccentricity of E2E_2,\hspace6mm e^2 - 1 - \frac{a^2}{b^2}= 1 - \frac {12}{16} = \frac {1}{4} \hspace3mm [\because a< b ]
\therefore \hspace13mm e = \frac{1}{2}