Solveeit Logo

Question

Question: The elimination of the arbitrary constants A, B and C from \(y = A + B x + C e ^ { - x }\)leads to t...

The elimination of the arbitrary constants A, B and C from y=A+Bx+Cexy = A + B x + C e ^ { - x }leads to the differential equation

A

yy=0y ^ { \prime \prime \prime } - y ^ { \prime } = 0

B

yy+y=0y ^ { \prime \prime \prime } - y ^ { \prime \prime } + y ^ { \prime } = 0

C

y+y=0y ^ { \prime \prime \prime } + y ^ { \prime \prime } = 0

D

y+yy=0y ^ { \prime \prime } + y ^ { \prime \prime } - y ^ { \prime } = 0

Answer

y+y=0y ^ { \prime \prime \prime } + y ^ { \prime \prime } = 0

Explanation

Solution

Given y=A+Bx+Cexy = A + B x + C e ^ { - x } …..(i)

dydx=BCex\frac { d y } { d x } = B - C e ^ { - x } .….(ii)

d2ydx2=Cex\frac { d ^ { 2 } y } { d x ^ { 2 } } = C e ^ { - x } .….(iii) and d3ydx3=Cex\frac { d ^ { 3 } y } { d x ^ { 3 } } = - C e ^ { - x } ….(iv)

Adding (iii) and (iv) we get,

d3ydx3+d2ydx2=0\frac { d ^ { 3 } y } { d x ^ { 3 } } + \frac { d ^ { 2 } y } { d x ^ { 2 } } = 0 i.e., y+y=0y ^ { \prime \prime \prime } + y ^ { \prime \prime } = 0 .