Solveeit Logo

Question

Physics Question on Magnetic Force

The electrostatic force (F1\vec{F_1}) and magnetic force (F2\vec{F_2}) acting on a charge qq moving with velocity v\vec{v} can be written:

A

F1=qVE,F2=q(BV)\vec{F_1} = q \vec{V} \cdot \vec{E}, \quad \vec{F_2} = q (\vec{B} \cdot \vec{V})

B

F1=qB,F2=q(B×V)\vec{F_1} = q \vec{B}, \quad \vec{F_2} = q (\vec{B} \times \vec{V})

C

F1=qE,F2=q(V×B)\vec{F_1} = q \vec{E}, \quad \vec{F_2} = q (\vec{V} \times \vec{B})

D

F1=qE,F2=q(B×V)\vec{F_1} = q \vec{E}, \quad \vec{F_2} = q (\vec{B} \times \vec{V})

Answer

F1=qE,F2=q(V×B)\vec{F_1} = q \vec{E}, \quad \vec{F_2} = q (\vec{V} \times \vec{B})

Explanation

Solution

The electrostatic force acting on a charged particle is given by:

F1=qE,\vec{F}_1 = q\vec{E},

where:
- qq is the charge of the particle,
- E\vec{E} is the electric field.

The magnetic force acting on a charged particle moving with velocity v\vec{v} in a magnetic field B\vec{B} is given by the Lorentz force law:

F2=q(v×B),\vec{F}_2 = q(\vec{v} \times \vec{B}),

where:
- qq is the charge of the particle,
- v\vec{v} is the velocity of the particle,
- B\vec{B} is the magnetic field.

Therefore, the correct expressions for the electrostatic and magnetic forces are:

F1=qE,F2=q(v×B).\vec{F}_1 = q\vec{E}, \quad \vec{F}_2 = q(\vec{v} \times \vec{B}).

Hence, the correct option is (3).