Solveeit Logo

Question

Question: The electric potential, $V$ in a certain region of space depends only on the $x$ coordinate as $V = ...

The electric potential, VV in a certain region of space depends only on the xx coordinate as V=a0x4+V0V = -a_0x^4 + V_0, where a0a_0 and V0V_0 are constants. Consider a cuboid in space of dimensions L×L2×L2L \times \frac{L}{2} \times \frac{L}{2} whose length stretches along the xx-axis from x=0x = 0 to x=Lx = L. Then choose the correct option(s).

A

The charge contained within the cuboid is ϵ0a0L5\epsilon_0 a_0 L^5

B

The charge contained within the cuboid is ϵ0a0L52\frac{\epsilon_0 a_0 L^5}{2}

C

The electric flux through the surface of the cuboid is a0L52\frac{a_0 L^5}{2}

D

The charge density at x=L2x = \frac{L}{2} is 3ϵ0a0L23\epsilon_0 a_0 L^2

Answer

(A), (D)

Explanation

Solution

The electric potential in a certain region of space is given by V(x)=a0x4+V0V(x) = -a_0x^4 + V_0.

The electric field E\vec{E} is related to the potential by E=V\vec{E} = -\nabla V. Since VV depends only on xx, the electric field is in the xx-direction:

Ex=Vx=x(a0x4+V0)=(4a0x3)=4a0x3E_x = -\frac{\partial V}{\partial x} = -\frac{\partial}{\partial x}(-a_0x^4 + V_0) = -(-4a_0x^3) = 4a_0x^3.

So, the electric field is E(x)=4a0x3i^\vec{E}(x) = 4a_0x^3 \hat{i}.

The charge density ρ\rho is related to the electric field by Gauss's law in differential form: E=ρϵ0\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}.

ρ=ϵ0(E)\rho = \epsilon_0 (\nabla \cdot \vec{E}).

Since E=4a0x3i^\vec{E} = 4a_0x^3 \hat{i}, the divergence is:

E=Exx+Eyy+Ezz=x(4a0x3)+0+0=12a0x2\nabla \cdot \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = \frac{\partial}{\partial x}(4a_0x^3) + 0 + 0 = 12a_0x^2.

So, the charge density is ρ(x)=ϵ0(12a0x2)=12ϵ0a0x2\rho(x) = \epsilon_0 (12a_0x^2) = 12\epsilon_0 a_0 x^2.

Let's check the given options:

(D) The charge density at x=L2x = \frac{L}{2} is 3ϵ0a0L23\epsilon_0 a_0 L^2.

Substitute x=L2x = \frac{L}{2} into the expression for ρ(x)\rho(x):

ρ(L2)=12ϵ0a0(L2)2=12ϵ0a0L24=3ϵ0a0L2\rho(\frac{L}{2}) = 12\epsilon_0 a_0 (\frac{L}{2})^2 = 12\epsilon_0 a_0 \frac{L^2}{4} = 3\epsilon_0 a_0 L^2.

Option (D) is correct.

The cuboid has dimensions L×L2×L2L \times \frac{L}{2} \times \frac{L}{2} and stretches along the xx-axis from x=0x = 0 to x=Lx = L. Let the cuboid occupy the region 0xL0 \le x \le L, 0yL/20 \le y \le L/2, 0zL/20 \le z \le L/2.

The charge contained within the cuboid is Q=VρdVQ = \int_V \rho \, dV.

Q=0L/20L/20Lρ(x)dxdydzQ = \int_0^{L/2} \int_0^{L/2} \int_0^L \rho(x) \, dx \, dy \, dz

Q=0L/2dy0L/2dz0L(12ϵ0a0x2)dxQ = \int_0^{L/2} dy \int_0^{L/2} dz \int_0^L (12\epsilon_0 a_0 x^2) \, dx

Q=(L2)(L2)0L12ϵ0a0x2dxQ = (\frac{L}{2})(\frac{L}{2}) \int_0^L 12\epsilon_0 a_0 x^2 \, dx

Q=L2412ϵ0a0[x33]0LQ = \frac{L^2}{4} \cdot 12\epsilon_0 a_0 [\frac{x^3}{3}]_0^L

Q=3ϵ0a0L2(L330)=ϵ0a0L5Q = 3\epsilon_0 a_0 L^2 (\frac{L^3}{3} - 0) = \epsilon_0 a_0 L^5.

(A) The charge contained within the cuboid is ϵ0a0L5\epsilon_0 a_0 L^5.

This matches our calculation. Option (A) is correct.

(B) The charge contained within the cuboid is ϵ0a0L52\frac{\epsilon_0 a_0 L^5}{2}.

This does not match our calculation. Option (B) is incorrect.

The electric flux through the surface of the cuboid can be calculated using Gauss's law: ΦE=Qenclosedϵ0\Phi_E = \frac{Q_{enclosed}}{\epsilon_0}.

Using the charge enclosed we calculated:

ΦE=ϵ0a0L5ϵ0=a0L5\Phi_E = \frac{\epsilon_0 a_0 L^5}{\epsilon_0} = a_0 L^5.

Alternatively, we can calculate the flux by integrating EdA\vec{E} \cdot d\vec{A} over the surface of the cuboid.

The cuboid has 6 faces. The electric field is E(x)=4a0x3i^\vec{E}(x) = 4a_0x^3 \hat{i}.

The faces perpendicular to the xx-axis are at x=0x=0 and x=Lx=L.

  • Face at x=0x=0: Area vector dA=dydzi^d\vec{A} = -dy dz \hat{i}. E(0)=4a0(0)3i^=0\vec{E}(0) = 4a_0(0)^3 \hat{i} = 0. Flux Φ1=E(0)dA=0\Phi_1 = \int \vec{E}(0) \cdot d\vec{A} = 0.

  • Face at x=Lx=L: Area vector dA=dydzi^d\vec{A} = dy dz \hat{i}. E(L)=4a0L3i^\vec{E}(L) = 4a_0L^3 \hat{i}. Flux Φ2=0L/20L/2(4a0L3i^)(dydzi^)=4a0L30L/2dy0L/2dz=4a0L3(L2)(L2)=a0L5\Phi_2 = \int_{0}^{L/2} \int_{0}^{L/2} (4a_0L^3 \hat{i}) \cdot (dy dz \hat{i}) = 4a_0L^3 \int_0^{L/2} dy \int_0^{L/2} dz = 4a_0L^3 (\frac{L}{2})(\frac{L}{2}) = a_0L^5.

The faces perpendicular to the yy and zz axes have area vectors in the j^\hat{j} or k^\hat{k} directions. Since E\vec{E} is only in the i^\hat{i} direction, the dot product EdA\vec{E} \cdot d\vec{A} is zero for these faces.

Total flux ΦE=Φ1+Φ2+Φyfaces+Φzfaces=0+a0L5+0+0=a0L5\Phi_E = \Phi_1 + \Phi_2 + \Phi_{y faces} + \Phi_{z faces} = 0 + a_0L^5 + 0 + 0 = a_0L^5.

(C) The electric flux through the surface of the cuboid is a0L52\frac{a_0 L^5}{2}.

This does not match our calculation. Option (C) is incorrect.

The correct options are (A) and (D).