Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

The electric potential at a point (x.y,z)(x. y, z) is given by V=x2yxz2+4V = - x^2 y - xz^2 + 4 The electric field at that point is

A

E=i^2xy+j^(x2+y2)+k^(3xzy2)\vec{E} = \hat{i} \, 2xy + \hat{j} \, (x^2 + y^2) + \hat{k} ( 3xz - y^2)

B

E=i^z3+j^xyz+k^z2\vec{E} = \hat{i} z^3 + \hat{j} \,xyz + \hat{k} \,z^2

C

E=i^(2xyz3)+j^xy2+k^3z2x\vec{ E} = \hat{i} (2xy - z^3 ) + \hat{j} \,xy^2 + \hat{k} \,3z^2 \, x

D

E=i^(2xy+z3)+j^x3+k^3xz2\vec{ E} = \hat{i} (2xy + z^3 ) + \hat{j} \,x^3 + \hat{k} \,3xz^2

Answer

E=i^(2xy+z3)+j^x3+k^3xz2\vec{ E} = \hat{i} (2xy + z^3 ) + \hat{j} \,x^3 + \hat{k} \,3xz^2

Explanation

Solution

V=x2yxz3+4V =- x ^{2} y - xz ^{3}+4 E=V=(i^δδx+j^δδy+k^δδz)\vec{ E}=- V =-\left(\hat{ i } \frac{\delta}{\delta x }+\hat{ j } \frac{\delta}{\delta y }+\hat{ k } \frac{\delta}{\delta z }\right) (x2xz3+4)\left(- x ^{2}- xz ^{3}+4\right) =(2xy+z3)i^+x2j^+3xz2k^=\left(2 xy + z ^{3}\right) \hat{ i }+ x ^{2} \hat{ j }+3 xz ^{2} \hat{ k }