Solveeit Logo

Question

Question: The electric intensity outside a charged sphere of radius R at a distance r (r > R)...

The electric intensity outside a charged sphere of radius R at a distance r (r > R)

A

σR2ϵ0r2\frac{\sigma R^2}{\epsilon_0 r^2}

B

σr2ϵ0R2\frac{\sigma r^2}{\epsilon_0 R^2}

C

σRϵ0r\frac{\sigma R}{\epsilon_0 r}

D

σrϵ0R\frac{\sigma r}{\epsilon_0 R}

Answer

σR2ϵ0r2\frac{\sigma R^2}{\epsilon_0 r^2}

Explanation

Solution

For a uniformly charged sphere with surface charge density σ\sigma and radius RR, the total charge is:

Q=σ×4πR2Q = \sigma \times 4\pi R^2.

Using Gauss's law for a spherical Gaussian surface of radius r>Rr > R:

E×4πr2=Qϵ0E \times 4\pi r^2 = \frac{Q}{\epsilon_0}.

Substitute QQ:

E×4πr2=σ4πR2ϵ0E=σR2ϵ0r2E \times 4\pi r^2 = \frac{\sigma \cdot 4\pi R^2}{\epsilon_0} \Rightarrow E = \frac{\sigma R^2}{\epsilon_0 r^2}.