Solveeit Logo

Question

Question: The electric field vector associated with plane electromagnetic wave is given as $\vec{E}(x, t) = 4 ...

The electric field vector associated with plane electromagnetic wave is given as E(x,t)=4cos(3×108tx)j^μV/m\vec{E}(x, t) = 4 \cos(3 \times 10^8t - x)\hat{j} \mu V/m. This wave strikes on a perfectly absorbing surface of area 1m21m^2 at normal incident. The total momentum transferred to the surface in 12.5 second is (ϵ0×10n)kg.m/s(\epsilon_0 \times 10^{-n}) kg.m/s. Find n (ϵ0\epsilon_0 is permittivity of medium)

Answer

10

Explanation

Solution

  1. Extract E0E_0, ω\omega, and kk from the given electric field equation:
    E(x,t)=4cos(3×108tx)j^μV/m\vec{E}(x, t) = 4 \cos(3 \times 10^8t - x)\hat{j} \mu V/m E0=4×106V/mE_0 = 4 \times 10^{-6} V/m, ω=3×108rad/s\omega = 3 \times 10^8 rad/s, k=1rad/mk = 1 rad/m

  2. Calculate the speed of light c=ω/kc = \omega/k:
    c=3×1081=3×108m/sc = \frac{3 \times 10^8}{1} = 3 \times 10^8 m/s

  3. Compute the average intensity I=12cϵ0E02I = \frac{1}{2} c \epsilon_0 E_0^2:
    I=12×3×108×ϵ0×(4×106)2=24×104ϵ0W/m2I = \frac{1}{2} \times 3 \times 10^8 \times \epsilon_0 \times (4 \times 10^{-6})^2 = 24 \times 10^{-4} \epsilon_0 W/m^2

  4. Determine the radiation pressure Prad=I/cP_{rad} = I/c for a perfectly absorbing surface:
    Prad=24×104ϵ03×108=8×1012ϵ0N/m2P_{rad} = \frac{24 \times 10^{-4} \epsilon_0}{3 \times 10^8} = 8 \times 10^{-12} \epsilon_0 N/m^2

  5. Calculate the force F=Prad×AF = P_{rad} \times A:
    F=8×1012ϵ0×1=8×1012ϵ0NF = 8 \times 10^{-12} \epsilon_0 \times 1 = 8 \times 10^{-12} \epsilon_0 N

  6. Find the total momentum transferred p=F×Δtp = F \times \Delta t:
    p=8×1012ϵ0×12.5=100×1012ϵ0=1010ϵ0kg.m/sp = 8 \times 10^{-12} \epsilon_0 \times 12.5 = 100 \times 10^{-12} \epsilon_0 = 10^{-10} \epsilon_0 kg.m/s

  7. Compare the calculated momentum with the given format (ϵ0×10n)(\epsilon_0 \times 10^{-n}) to find nn:
    1010ϵ0=ϵ0×10n10^{-10} \epsilon_0 = \epsilon_0 \times 10^{-n}
    n=10n = 10