Solveeit Logo

Question

Physics Question on Electromagnetic waves

The electric field in an electromagnetic wave is given by E=i^40cosω(tzc)NC1. \vec{E} = \hat{i} 40 \cos \omega \left( t - \frac{z}{c} \right) \, \text{NC}^{-1}.The magnetic field induction of this wave is (in SI unit):

A

B=i^40ccosω(tzc)\vec{B} = \hat{i} \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right)

B

B=j^40cosω(tzc)\vec{B} = \hat{j} 40 \cos \omega \left( t - \frac{z}{c} \right)

C

B=k^40ccosω(tzc)\vec{B} = \hat{k} \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right)

D

B=j^40ccosω(tzc)\vec{B} = \hat{j} \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right)

Answer

B=j^40ccosω(tzc)\vec{B} = \hat{j} \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right)

Explanation

Solution

Given the electric field of the electromagnetic wave:
E=i^40cosω(tzc)NC1\vec{E} = \hat{i} 40 \cos \omega \left( t - \frac{z}{c} \right) \, \text{NC}^{-1}
In an electromagnetic wave, the magnetic field B\vec{B} is perpendicular to both the electric field E\vec{E} and the direction of propagation.

Since E\vec{E} is along the i^\hat{i}-direction and the wave propagates along the k^\hat{k}-direction, the magnetic field B\vec{B} must be along the j^\hat{j}-direction.

The relationship between the magnitudes of the electric and magnetic fields in an electromagnetic wave is given by:
B=EcB = \frac{E}{c}

Substituting the given electric field magnitude:
B=40ccosω(tzc)B = \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right)
Thus, the magnetic field is:
B=j^40ccosω(tzc)\vec{B} = \hat{j} \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right)