Solveeit Logo

Question

Physics Question on Current electricity

The electric current through a wire varies with time as I=I0+βtI = I_0 + \beta t where I0=20AI_0 = 20 \, \text{A} and β=3A/s\beta = 3 \, \text{A/s}. The amount of electric charge that crosses through a section of the wire in 20s20 \, \text{s} is:

A

80C

B

1000C

C

800C

D

1600C

Answer

1000C

Explanation

Solution

Step 1: Express Current as a Function of Time

I=I0+βt=20+3tI = I_0 + \beta t = 20 + 3t

Step 2: Calculate Charge qq Over Time

The current I=dqdtI = \frac{dq}{dt}, so we can write:

dq=(20+3t)dtdq = (20 + 3t) dt

Step 3: Integrate to Find Total Charge qq from t=0t = 0 to t=20t = 20

q=020(20+3t)dtq = \int_{0}^{20} (20 + 3t) dt

Split the integral:

q=02020dt+0203tdtq = \int_{0}^{20} 20 dt + \int_{0}^{20} 3t dt

Step 4: Evaluate Each Integral

q=[20t]020+[3t22]020q = \left[20t\right]_{0}^{20} + \left[\frac{3t^2}{2}\right]_{0}^{20}

=(20×20)+3×2022= (20 \times 20) + \frac{3 \times 20^2}{2}

=400+3×4002= 400 + \frac{3 \times 400}{2}

=400+600=1000C= 400 + 600 = 1000 \, C

So, the correct answer is: 1000 C