Solveeit Logo

Question

Engineering Mathematics Question on Eigenvectors

The eigenvectors of the matrix are:
A=(i1 2i)A=\left(\begin{matrix} i & 1 \\\ 2 & -i \end{matrix}\right)

A

{(1 1i),(1 1+i)}\begin{Bmatrix} \left(\begin{matrix} 1 \\\ 1-i \end{matrix}\right),\left(\begin{matrix} 1 \\\ 1+i \end{matrix}\right) \end{Bmatrix}

B

{(i 1i),(1 1i)}\begin{Bmatrix} \left(\begin{matrix} i \\\ 1-i \end{matrix}\right),\left(\begin{matrix} 1 \\\ -1-i \end{matrix}\right) \end{Bmatrix}

C

{(1+i 1),(1 1+i)}\begin{Bmatrix} \left(\begin{matrix} 1+i \\\ -1 \end{matrix}\right),\left(\begin{matrix} 1 \\\ 1+i \end{matrix}\right) \end{Bmatrix}

D

{(2+i 1),(1 3i)}\begin{Bmatrix} \left(\begin{matrix} 2+i \\\ 1 \end{matrix}\right),\left(\begin{matrix} 1 \\\ 3-i \end{matrix}\right) \end{Bmatrix}

Answer

{(i 1i),(1 1i)}\begin{Bmatrix} \left(\begin{matrix} i \\\ 1-i \end{matrix}\right),\left(\begin{matrix} 1 \\\ -1-i \end{matrix}\right) \end{Bmatrix}

Explanation

Solution

The correct option is(B): {(i 1i),(1 1i)}\begin{Bmatrix} \left(\begin{matrix} i \\\ 1-i \end{matrix}\right),\left(\begin{matrix} 1 \\\ -1-i \end{matrix}\right) \end{Bmatrix}