Solveeit Logo

Question

Question: The efficiency \(E\) of a screw jack is given by \[E = \dfrac{{\tan \theta }}{{\tan (\theta + \phi )...

The efficiency EE of a screw jack is given by E=tanθtan(θ+ϕ)E = \dfrac{{\tan \theta }}{{\tan (\theta + \phi )}} where θ\theta is variable and ϕ\phi is some constant angle lying in (0,π2)(0,\dfrac{\pi }{2}). The maximum efficiency is given by,
A. 1cosϕ1+cosϕ\dfrac{{1 - \cos \phi }}{{1 + \cos \phi }}
B. 1sinϕ1+sinϕ\dfrac{{1 - \sin \phi }}{{1 + \sin \phi }}
C. cosϕ3(1+sinϕ)\dfrac{{\cos \phi }}{{3(1 + \sin \phi )}}
D. cosϕ1+cosϕ\dfrac{{\cos \phi }}{{1 + \cos \phi }}

Explanation

Solution

The efficiency of the screw jack will be maximum if the second order derivative of the efficiency is a negative quantity. To solve this question from the maxima or minima condition, find the maximum value of the angle θ\theta in terms of the angle ϕ\phi to get the maximum efficiency.

Formula used: The value of any function will be a maxima or minima if dydx=0\dfrac{{dy}}{{dx}} = 0 where y is a function of x.
Relation of sine of compound angles, 2sinacosb=sin(a+b)+sin(ab)2\sin a\cos b = \sin (a + b) + \sin (a - b)]

Complete step by step answer:
We have given here that the efficiency of a screw jack is E=tanθtan(θ+ϕ)E = \dfrac{{\tan \theta }}{{\tan (\theta + \phi )}} where θ\theta is variable and ϕ\phi is some constant angle lying in (0,π2)(0,\dfrac{\pi }{2}). Now, we have to find the maximum value of the efficiency.
We know that the value of any function will be a maxima or minima if dydx=0\dfrac{{dy}}{{dx}} = 0 where y is a function of x. So, if we find the first order derivative of the efficiency w.r.t θ\theta we can get the minima or maxima condition.

Let’s first rewrite the expression of the efficiency using the formulas of compound angles.
E=tanθtan(θ+ϕ)E = \dfrac{{\tan \theta }}{{\tan (\theta + \phi )}}
E=sinθcos(θ+ϕ)sin(θ+ϕ)cosθ\Rightarrow E = \dfrac{{\sin \theta \cos (\theta + \phi )}}{{\sin (\theta + \phi )\cos \theta }}
E=2sinθcos(θ+ϕ)2sin(θ+ϕ)cosθ\Rightarrow E = \dfrac{{2\sin \theta \cos (\theta + \phi )}}{{2\sin (\theta + \phi )\cos \theta }}
E=sin(2θ+ϕ)+sin(θθϕ)sin(2θ+ϕ)+sin(θ+ϕθ)\Rightarrow E = \dfrac{{\sin (2\theta + \phi ) + \sin (\theta - \theta - \phi )}}{{\sin (2\theta + \phi ) + \sin (\theta + \phi - \theta )}} [ using the formula, 2sinacosb=sin(a+b)+sin(ab)2\sin a\cos b = \sin (a + b) + \sin (a - b)]
E=sin(2θ+ϕ)sin(ϕ)sin(2θ+ϕ)+sin(ϕ)\Rightarrow E = \dfrac{{\sin (2\theta + \phi ) - \sin (\phi )}}{{\sin (2\theta + \phi ) + \sin (\phi )}}…..(i)
Now, differentiating with respect to θ\theta we get,
dEdθ=ddθ(sin(2θ+ϕ)sin(ϕ)sin(2θ+ϕ)+sin(ϕ))\dfrac{{dE}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( {\dfrac{{\sin (2\theta + \phi ) - \sin (\phi )}}{{\sin (2\theta + \phi ) + \sin (\phi )}}} \right)
dEdθ=[sin(2θ+ϕ)+sin(ϕ)]ddθ[sin(2θ+ϕ)sin(ϕ)][sin(2θ+ϕ)sin(ϕ)]ddθ[sin(2θ+ϕ)+sin(ϕ)][sin(2θ+ϕ)+sin(ϕ)]2\Rightarrow \dfrac{{dE}}{{d\theta }} = \dfrac{{[\sin (2\theta + \phi ) + \sin (\phi )]\dfrac{d}{{d\theta }}\left[ {\sin (2\theta + \phi ) - \sin (\phi )} \right] - [\sin (2\theta + \phi ) - \sin (\phi )]\dfrac{d}{{d\theta }}\left[ {\sin (2\theta + \phi ) + \sin (\phi )} \right]}}{{{{[\sin (2\theta + \phi ) + \sin (\phi )]}^2}}}
dEdθ=[sin(2θ+ϕ)+sin(ϕ)]×2cos(2θ+ϕ)[sin(2θ+ϕ)sin(ϕ)]×2cos(2θ+ϕ)[sin(2θ+ϕ)+sin(ϕ)]2\Rightarrow \dfrac{{dE}}{{d\theta }} = \dfrac{{[\sin (2\theta + \phi ) + \sin (\phi )] \times 2\cos (2\theta + \phi ) - [\sin (2\theta + \phi ) - \sin (\phi )] \times 2\cos (2\theta + \phi )}}{{{{[\sin (2\theta + \phi ) + \sin (\phi )]}^2}}}

Now, for maxima or minima conditions, this will be equal to zero. Hence,
dEdθ=[sin(2θ+ϕ)+sin(ϕ)]×2cos(2θ+ϕ)[sin(2θ+ϕ)sin(ϕ)]×2cos(2θ+ϕ)[sin(2θ+ϕ)+sin(ϕ)]2=0\dfrac{{dE}}{{d\theta }} = \dfrac{{[\sin (2\theta + \phi ) + \sin (\phi )] \times 2\cos (2\theta + \phi ) - [\sin (2\theta + \phi ) - \sin (\phi )] \times 2\cos (2\theta + \phi )}}{{{{[\sin (2\theta + \phi ) + \sin (\phi )]}^2}}} = 0
2cos(2θ+ϕ)[sin(2θ+ϕ)+sin(ϕ)][sin(2θ+ϕ)sin(ϕ)][sin(2θ+ϕ)+sin(ϕ)]2=0\Rightarrow 2\cos (2\theta + \phi )\dfrac{{[\sin (2\theta + \phi ) + \sin (\phi )] - [\sin (2\theta + \phi ) - \sin (\phi )]}}{{{{[\sin (2\theta + \phi ) + \sin (\phi )]}^2}}} = 0
2cos(2θ+ϕ)[sin(2θ+ϕ)+sin(ϕ)sin(2θ+ϕ)+sin(ϕ)]=0\Rightarrow 2\cos (2\theta + \phi )[\sin (2\theta + \phi ) + \sin (\phi ) - \sin (2\theta + \phi ) + \sin (\phi )] = 0
4cos(2θ+ϕ)sinϕ=0\Rightarrow 4\cos (2\theta + \phi )\sin \phi = 0
Hence, from this we can write,
sinϕ=0\sin \phi = 0or cos(2θ+ϕ)=0\cos (2\theta + \phi ) = 0
For, sinϕ=0\sin \phi = 0
ϕ=0\phi = 0
But ϕ\phi is lying in (0,π2)(0,\dfrac{\pi }{2})or 0<ϕ<π20 < \phi < \dfrac{\pi }{2}
Hence, cos(2θ+ϕ)=0\cos (2\theta + \phi ) = 0
θ=π4ϕ2\theta = \dfrac{\pi }{4} - \dfrac{\phi }{2}

From the term dEdθ=2cos(2θ+ϕ)2sin(ϕ)[sin(2θ+ϕ)+sin(ϕ)]2\dfrac{{dE}}{{d\theta }} = 2\cos (2\theta + \phi )\dfrac{{2\sin (\phi )}}{{{{[\sin (2\theta + \phi ) + \sin (\phi )]}^2}}}we can see that the if again differentiated d2Edθ2\dfrac{{{d^2}E}}{{d{\theta ^2}}}will be negative at θ=π4ϕ2\theta = \dfrac{\pi }{4} - \dfrac{\phi }{2} since differentiation of cosine is ddθcosθ=sinθ\dfrac{d}{{d\theta }}\cos \theta = - \sin \theta and the square term will always be positive. Hence, EEwill have maxima at θ=π4ϕ2\theta = \dfrac{\pi }{4} - \dfrac{\phi }{2}since d2Edθ2\dfrac{{{d^2}E}}{{d{\theta ^2}}}is negative.
Hence, putting the value of θ\theta in equation(i) we will have,
E=sin(π2ϕ+ϕ)sin(ϕ)sin(π2ϕ+ϕ)+sin(ϕ)E = \dfrac{{\sin (\dfrac{\pi }{2} - \phi + \phi ) - \sin (\phi )}}{{\sin (\dfrac{\pi }{2} - \phi + \phi ) + \sin (\phi )}}
E=sin(π2)sin(ϕ)sin(π2)+sin(ϕ)\Rightarrow E = \dfrac{{\sin (\dfrac{\pi }{2}) - \sin (\phi )}}{{\sin (\dfrac{\pi }{2}) + \sin (\phi )}}
E=1sinϕ1+sinϕ\therefore E = \dfrac{{1 - \sin \phi }}{{1 + \sin \phi }}
Hence, the value of maximum efficiency is E=1sinϕ1+sinϕE = \dfrac{{1 - \sin \phi }}{{1 + \sin \phi }}.

Hence, option B is the correct answer.

Note: When solving this type of problem, deduce the differentiation of the function carefully. Any missing sign or value will lead to a different or wrong result. We can also solve this problem by directly differentiating the given function without using the relation of compound angle at first, but when equating the relation to zero we have to use the relation of compound angles or else we will miss the require solution θ=π4ϕ2\theta = \dfrac{\pi }{4} - \dfrac{\phi }{2} and will get only the solution ϕ=0\phi = 0.