Solveeit Logo

Question

Mathematics Question on Hyperbola

The eccentricity of the hyperbola with latus rectum 1212 and semi-conjugate axis 232\sqrt{3} , is

A

33

B

32\sqrt{\frac{3}{2}}

C

232\sqrt{3}

D

2

Answer

2

Explanation

Solution

Let equation of hyperbola be.
x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
Length of latusrectum, 2b2a=12 \frac{2b^2}{a} = 12
and length of semi-coqjugate axis, b=23 b = 2\sqrt{3}
2(23)2a=12\therefore \frac{2(2\sqrt{3})^2}{a} = 12
a=2\Rightarrow a = 2
\therefore Eccentricitye=1+b2a2 e = \sqrt{1+ \frac{b^2}{a^2}}
=1+(23)2(2)2= \sqrt{1+ \frac{\left(2\sqrt{3}\right)^{2}}{\left(2\right)^{2}}}
=1+124=2= \sqrt{1 + \frac{12}{4}} =2