Solveeit Logo

Question

Question: The eccentricity of the hyperbola which passes through (3, 0) and \((3\sqrt{2},2)\) is...

The eccentricity of the hyperbola which passes through (3, 0) and (32,2)(3\sqrt{2},2) is

A

(13)\sqrt{(13)}

B

133\frac{\sqrt{13}}{3}

C

134\sqrt{\frac{13}{4}}

D

None of these

Answer

None of these

Explanation

Solution

Let equation of hyperbola is x2/a2y2/b2=1x^{2}/a^{2} - y^{2}/b^{2} = 1. Point (3, 0) lies on hyperbola

So, (3)2a20b2=1\frac{(3)^{2}}{a^{2}} - \frac{0}{b^{2}} = 1 or 9a2=1\frac{9}{a^{2}} = 1 or a2=9a^{2} = 9 and point (32,2)(3\sqrt{2},2) also lies on hyperbola. So, 3(2)2a2(2)2b2=1\frac{3(\sqrt{2})^{2}}{a^{2}} - \frac{(2)^{2}}{b^{2}} = 1

Put a2=9a^{2} = 9 we get, 1894b2=1\frac{18}{9} - \frac{4}{b^{2}} = 1 or 24b2=12 - \frac{4}{b^{2}} = 1 or 4b2=12- \frac{4}{b^{2}} = 1 - 2 or 4b2=1\frac{4}{b^{2}} = 1 or b2=4b^{2} = 4

We know that b2=a2(e21)b^{2} = a^{2}(e^{2} - 1). Putting values of a2a^{2} and b2b^{2}

4=9(e21)4 = 9(e^{2} - 1) or e21=49e^{2} - 1 = \frac{4}{9} or e2=1+49e^{2} = 1 + \frac{4}{9} or

e=(1+4/9)ore=(13)/9=133e = \sqrt{(1 + 4/9)}\text{or}e = \sqrt{(13)/9} = \frac{\sqrt{13}}{3}