Solveeit Logo

Question

Mathematics Question on Conic sections

The eccentricity of the ellipse x236+y216=1\frac{x^2}{36} + \frac{y^2}{16} = 1 is

A

256\frac{2\sqrt{5}}{6}

B

254\frac{2\sqrt{5}}{4}

C

2136\frac{2\sqrt{13}}{6}

D

2134\frac{2\sqrt{13}}{4}

Answer

256\frac{2\sqrt{5}}{6}

Explanation

Solution

We have
x236+y216=1\frac{x^2}{36} + \frac{y^2}{16} = 1
x262+y242=1\Rightarrow \frac{x^2}{6^2} + \frac{y^2}{4^2}= 1
a=6\therefore a=6 and b=4b=4
Since, a>ba > b
e=1b2a2\therefore e=\sqrt{1-\frac{b^{2}}{a^{2}}}
=1(4)2(6)2=\sqrt{1-\frac{(4)^{2}}{(6)^{2}}}
=11636=\sqrt{1-\frac{16}{36}}
=2036=\sqrt{\frac{20}{36}}
=256=\frac{2 \sqrt{5}}{6}