Solveeit Logo

Question

Mathematics Question on Ellipse

The eccentricity of the ellipse (x1)22+(y+34)2=116 \frac{\left(x-1\right)^{2}}{2} + \left(y + \frac{3}{4}\right)^{2} = \frac{1}{16} is

A

1/21 / \sqrt{2}

B

1/221 / 2 \sqrt{2}

C

1/21/2

D

1/41/4

Answer

1/21 / \sqrt{2}

Explanation

Solution

We have, (x1)22+(y+3/4)2=116\frac{(x-1)^{2}}{2}+(y+3 / 4)^{2}=\frac{1}{16} 8(x1)2+16(y+3/4)2=1\Rightarrow 8(x-1)^{2}+16(y+3 / 4)^{2}=1 (x1)21/8+(y+3/4)21/16=1\Rightarrow \frac{(x-1)^{2}}{1 / 8}+\frac{(y+3 / 4)^{2}}{1 / 16}=1 a2=18\therefore a^{2}=\frac{1}{8} and b2=116b^{2}=\frac{1}{16} a=122\Rightarrow a=\frac{1}{2 \sqrt{2}} and b=14b=\frac{1}{4} e=1b2a2[a>b]\therefore e =\sqrt{1-\frac{b^{2}}{a^{2}}} \,\,\,[\because a >b] =11/161/8=112=12=\sqrt{1-\frac{1 / 16}{1 / 8}}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}