Solveeit Logo

Question

Mathematics Question on Ellipse

The eccentricity of the ellipse 25x2+9y2150x90y225=0 25x^2 + 9y^2- 150x - 90y - 225 = 0 is

A

45\frac{4}{5}

B

35\frac{3}{5}

C

415\frac{4}{15}

D

95\frac{9}{5}

Answer

45\frac{4}{5}

Explanation

Solution

The given ellipse is 25(x26x)+9(y210y)=22525\left(x^{2}-6x\right)+9\left(y^{2}-10y\right) = 225 25(x3)2+9(y5)2\Rightarrow 25\left(x-3\right)^{2} +9\left(y-5\right)^{2} =225+225+225=675= 225+225+225=675 (x3)227+(y5)275=1\Rightarrow \frac{\left(x-3\right)^{2}}{27}+\frac{\left(y-5\right)^{2}}{75} = 1 [Typex2b2+y2a2=1]\quad \left[{\text{Type}} \frac{x^{2}}{b^{2}} +\frac{y^{2}}{a^{2}} = 1\right] Since b2=a2(1e2)b^{2} = a^{2} \left(1-e^{2} \right) 1e2=2775\Rightarrow 1-e^{2} = \frac{27}{75} e2=12775=4875=1625\Rightarrow e^{2}= 1-\frac{27}{75} = \frac{48}{75} = \frac{16}{25} e=45\therefore e=\frac{4}{5}