Solveeit Logo

Question

Question: The eccentricity of the conjugate hyperbola of the hyperbola \(x^{2} - 3y^{2} = 1\), is...

The eccentricity of the conjugate hyperbola of the hyperbola x23y2=1x^{2} - 3y^{2} = 1, is

A

2

B

23\frac{2}{\sqrt{3}}

C

4

D

x+y=25x + y = 25

Answer

2

Explanation

Solution

The given hyperbola is x21y21/3=1\frac{x^{2}}{1} - \frac{y^{2}}{1/3} = 1. Here a2=1a^{2} = 1 and b2=13b^{2} = \frac{1}{3}

Since b2=a2(e21)b^{2} = a^{2}(e^{2} - 1)13=1(e21)\frac{1}{3} = 1(e^{2} - 1)e2=43e^{2} = \frac{4}{3}e=23e = \frac{2}{\sqrt{3}}

If ee^{'} is the eccentricity of the conjugate hyperbola, then 1e2+1e2\frac{1}{e^{2}} + \frac{1}{e^{'2}} = 1 ⇒ 1e2=11e2=134=14\frac{1}{e^{'2}} = 1 - \frac{1}{e^{2}} = 1 - \frac{3}{4} = \frac{1}{4}e=2e^{'} = 2