Solveeit Logo

Question

Question: The eccentric angles of the extremities of latus recta of the ellipse \(\frac{x^{2}}{a^{2}} + \frac{...

The eccentric angles of the extremities of latus recta of the ellipse x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 are given by

A

tan-1(±aeb)\left( \pm \frac{ae}{b} \right)

B

tan-1(±bea)\left( \pm \frac{be}{a} \right)

C

tan-1(±bae)\left( \pm \frac{b}{ae} \right)

D

tan-1(±abe)\left( \pm \frac{a}{be} \right)

Answer

tan-1(±bae)\left( \pm \frac{b}{ae} \right)

Explanation

Solution

Coordinates of any point on the ellipse x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 whose eccentric angle is θ are (a cos θ, b sin θ). The coordinates of the end points of latus recta are (ae,±b2a)\left( ae, \pm \frac{b^{2}}{a} \right). ∴ acosθ = ae and b sin θ = ± b2a\frac{b^{2}}{a}

⇒ tan θ = ±bae\frac{b}{ae} ⇒ θ tan-1 (±bae)\left( \pm \frac{b}{ae} \right).