Solveeit Logo

Question

Mathematics Question on Ellipse

The eccentric angle of the point (2,3)(2,\sqrt{3}) lying on x216+y241\frac {x^2}{16}+\frac{y^2}{4}-1 is _________

A

π3\frac {\pi}{3}

B

π6\frac {\pi}{6}

C

π4\frac {\pi}{4}

D

π2\frac {\pi}{2}

Answer

π3\frac {\pi}{3}

Explanation

Solution

Given equation of an ellipse is
x216+y24=1\frac{x^{2}}{16}+\frac{y^{2}}{4}=1 and point P(2,3)P(2, \sqrt{3})
Let θ\theta be the eccentric angle.
The parametric coordinate of an ellipse is
{x=4cosθ y=2sinθ\begin{cases} x=4 \cos \theta \\\ y=2 \sin \theta \end{cases}...(i)
Given that, eccentric angle at PP is,
2=4cosθcosθ=122=4 \cos \theta \Rightarrow \cos \theta=\frac{1}{2}
2=2sinθsinθ=32\sqrt{2}=2 \sin \theta \Rightarrow \sin \theta=\frac{\sqrt{3}}{2}
Hence, θ=π3\theta=\frac{\pi}{3}