Solveeit Logo

Question

Chemistry Question on Nernst Equation

The Ered E _{\text {red }}^{\circ} of Ag,Cu,CoAg,\, Cu ,\, Co and ZnZn are 0.7990.799 0.337,0.2770.337,-0.277 and 0.762V-0.762\, V respectively, which of the following cells will have maximum cell emf?

A

ZnZn2+(1M)Cu2+(1M)CuZn \left| Zn ^{2+}(1 M ) \| Cu ^{2+}(1 M )\right| Cu

B

ZnZn2+(1M)Ag+(1M)AgZn \left| Zn ^{2+}(1 M ) \| Ag ^{+}(1 M )\right| Ag

C

CuCu2+(1M)Ag+(1M)AgCu \left| Cu ^{2+}(1 M ) \| Ag ^{+}(1 M )\right| Ag

D

ZnZn2+(1M)Co2+(1M)CoZn \left| Zn ^{2+}(1 M ) \| Co ^{2+}(1 M )\right| Co

Answer

ZnZn2+(1M)Ag+(1M)AgZn \left| Zn ^{2+}(1 M ) \| Ag ^{+}(1 M )\right| Ag

Explanation

Solution

(i) ZnZn2+(1M)Ag+(lM)AgZn \left| Zn ^{2+}(1 M ) \| Ag ^{+}( lM )\right| Ag
ZnZn2+(1M)Ag+(1M)AgZn \left| Zn ^{2+}(1 M ) \| Ag ^{+}(1 M )\right| Ag

given EZn2+/Zn=0.762E _{ Zn ^{2+} / Zn }^{\circ}=-0.762
EAg+/Ag=0.799E _{ Ag ^{+} / Ag }^{\circ}=0.799

From Nernst equation,

E=E0.059lnlog[ Products  Reactants ]E = E ^{\circ}-\frac{0.059 l }{ n } \log \left[\frac{\text { Products }}{\text { Reactants }}\right]

Cell reaction for the given cell is

Zn+2Ag+Zn2++2AgZn +2 Ag ^{+} \longrightarrow Zn ^{2+}+2 Ag
E=EAg+/AgEzn2+/Zn0.059l2logZn2+(Ag+)2E =E ^{\circ}{ }_{ Ag }^{+} / Ag ^{-} E ^{\circ} zn ^{2+} / Zn -\frac{0.059 l }{2} \log \frac{ Zn ^{2+}}{\left( Ag ^{+}\right)^{2}}
E=0.799(0.762)0.05912log(1l2)E = 0.799-(-0.762)-\frac{0.0591}{2} \log \left(\frac{1}{ l ^{2}}\right)
E=1.569VE = 1.569\, V

(ii) CuCu2+(1M)Ag+(IM)AgCu \left| Cu ^{2+}(1 M ) \| Ag ^{+}( IM )\right| Ag

Given ECu2+/Cu=0.337E _{ Cu ^{2+} / Cu }^{\circ} =0.337
EAgAg=0.799E _{ Ag ^{\circ}}{ Ag } =0.799

Cell reaction

Cu+2Ag+Cu2++2AgCu +2 Ag ^{+} \longrightarrow Cu ^{2+}+2 Ag
E=EAg+/AgECu2+/Cu0.05912logCu2+(Ag+)2E=E^{\circ}_{Ag^{+}/Ag} -E^{\circ}_{Cu^{2+}/Cu} - \frac{0.0591}{2} log \frac{Cu^{2+}}{\left(Ag^{+}\right)^{2}}
E=0.7990.3370.05912log(ll2)E = 0.799-0.337-\frac{0.0591}{2} \log \left(\frac{ l }{ l ^{2}}\right)
E=0.462VE = 0.462\, V

(iii) ZnZn2+(1M)Co2+(1M)CoZn \left| Zn ^{2+}(1 M )\right|\left| Co ^{2+}(1 M )\right| Co

Given, EZn2+/Zn=0.762;ECo2+/Co=0.277E _{ Zn ^{2+} / Zn }^{\circ}=-0.762 ; E _{ Co ^{2+} / Co }^{\circ}=-0.277

Cell reaction :Zn+Co2+Zn2++Co: Zn + Co ^{2+} \longrightarrow Zn ^{2+}+ Co
E=ECo2+/CoEZn2+/Zn0.059l2log[Zn2+Co2+]E = E ^{\circ} Co ^{2+} / Co ^{- E ^{\circ} Zn ^{2+} / Zn }-\frac{0.059 l }{2} \log \left[\frac{ Zn ^{2+}}{ Co ^{2+}}\right]
E=0.277(0.762)0.05912log[11]E =-0.277-(-0.762)-\frac{0.0591}{2} \log \left[\frac{1}{1}\right]
E=0.485VE =0.485\, V

(iv) ZnZn2+(1M)Cu2+(lM)CuZn \left| Zn ^{2+}(1 M ) \| Cu ^{2+}( lM )\right| Cu

Given, EZn2+/Zn=0.762E _{ Zn ^{2+} / Zn }^{\circ}=-0.762
ECu2+/Cu2=0.337E ^{\circ} Cu ^{2+} / Cu ^{2}=0.337

Cell reaction Zn+Cu2+Zn2++CuZn + Cu ^{2+} \longrightarrow Zn ^{2+}+ Cu
E=ECu2+/CuEZn2+/Zn0.059l2log[Zn2+Cu2+]E = E ^{\circ}{ Cu ^{2+} / Cu }- E ^{\circ} Zn ^{2+} / Zn ^{-} \frac{0.059 l }{2} \log \left[\frac{ Zn ^{2+}}{ Cu ^{2+}}\right]
E=0.337(0.762)0.05912log(1l)E =0.337-(-0.762)-\frac{0.0591}{2} \log \left(\frac{1}{ l }\right)
E=1.099E =1.099

Hence, cell B has maximum emf.

So, the correct answer is (B): ZnZn2+(1M)Ag+(1M)AgZn \left| Zn ^{2+}(1 M ) \| Ag ^{+}(1 M )\right| Ag