Solveeit Logo

Question

Question: The drain cleaner, Drainex contains small bits of aluminium which react with caustic soda to produce...

The drain cleaner, Drainex contains small bits of aluminium which react with caustic soda to produce dihydrogen. What volume of dihydrogen at and one bar will be released when 0.15 g0.15{\text{ }}gof aluminium reacts?

A. 204 mL B. 200 mL C. 203  mL D. 400 mL {A.{\text{ }}204{\text{ }}mL} \\\ {B.{\text{ }}200{\text{ }}mL} \\\ {C.{\text{ }}203\;mL} \\\ {D.{\text{ }}400{\text{ }}mL}
Explanation

Solution

Hint : First calculate the parameters at STP and then use the ideal gas equation to find it at given requirements.
Formula Used:
Ideal Gas Equation: P1V1T1=P2V2T2\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}

Complete step by step solution :
Let’s start with writing the chemical reaction equation between the aluminium and caustic soda.
2Al + 2NaOH + 2H2O  2NaAlO2+ 3H22Al{\text{ }} + {\text{ }}2NaOH{\text{ }} + {\text{ }}2{H_2}O{\text{ }} \to {\text{ }}2NaAl{O_2} + {\text{ }}3{H_2}
From this equation we get that 2 moles2{\text{ }}moles of Aluminium is producing 3 moles3{\text{ }}moles of dihydrogen gas.
At STP (Standard temperature and pressure) 1 mole1{\text{ }}moleof dihydrogen gas is having the volume of22.4 litres22.4{\text{ }}litres.
So, 2 X 272{\text{ }}X{\text{ }}27(molar mass of aluminium) gives us 3 X 22.43{\text{ }}X{\text{ }}22.4litres of dihydrogen.
Which means 54 grams54{\text{ }}gramsof aluminium gives 3 X 22.4 L3{\text{ }}X{\text{ }}22.4{\text{ }}Lof dihydrogen at STP.
Now, we are having 0.15g0.15g of aluminium, so, how much litres of H2{H_2}will it produce at STP.
3×22.4×0.1554\dfrac{{3 \times 22.4 \times 0.15}}{{54}}= 0.186 L of H2at STP.0.186{\text{ }}L{\text{ }}of{\text{ }}{H_2}at{\text{ }}STP.
Now for calculating at and 1 bar1{\text{ }}barpressure we apply the ideal gas equation.
Ideal Gas Equation: P1V1T1=P2V2T2\dfrac{{{{\text{P}}_1}{{\text{V}}_1}}}{{{{\text{T}}_1}}} = \dfrac{{{{\text{P}}_2}{{\text{V}}_2}}}{{{{\text{T}}_2}}}
We are havingP1= 1atm, V1=0.187L, T1= 273K and P2= 1bar=0.987 atm, T2= 293K{P_1} = {\text{ }}1atm,{\text{ }}{V_1} = 0.187L,{\text{ }}{T_1} = {\text{ }}273K{\text{ }}and{\text{ }}{P_2} = {\text{ }}1bar = 0.987{\text{ }}atm,{\text{ }}{T_2} = {\text{ }}293K, V2{V_2}we have to find
So, putting these values in the equation we get
1×0.187273=0.987×V2293\dfrac{{1 \times 0.187}}{{273}} = \dfrac{{0.987 \times {V_2}}}{{293}}
V2=2930.987×0.187273{V_2} = \dfrac{{293}}{{0.987}} \times \dfrac{{0.187}}{{273}}
V2= 0.2030 L{V_2} = {\text{ }}0.2030{\text{ }}Lwhich is equal to 203mL203mL

So, the answer to this question is C. 203mL203mL

Note : We must know that ideal Gas Equation has a wide range of applications, ranging from solving problems like shown above to solving some complicated equations. But, nothing is ideal in nature. We can only bring things close to ideal but not ideal. Because of this there are some constants that are used to make this simple looking equation a little bit complex but suitable for non-ideal conditions.