Solveeit Logo

Question

Question: The domain of the function $y = \underbrace{log_{10}log_{10}log_{10}...log_{10}}_{n \text{ times}}x$...

The domain of the function y=log10log10log10...log10n timesxy = \underbrace{log_{10}log_{10}log_{10}...log_{10}}_{n \text{ times}}x is

A

[10n,+)[10^n, +\infty)

B

(10n1,+)(10^{n-1}, +\infty)

C

(10n2,+)(10^{n-2}, +\infty)

D

None of these

Answer

None of these

Explanation

Solution

For the function

y=log10log10log10log10n timesxy=\underbrace{\log_{10}\log_{10}\log_{10}\cdots\log_{10}}_{n\text{ times}}x,

each logarithm is defined only if its argument is positive.

Let's denote:

f1(x)=log10x,f2(x)=log10(log10x),f3(x)=log10(log10(log10x)),etc.f_1(x)=\log_{10}x, \quad f_2(x)=\log_{10}(\log_{10}x), \quad f_3(x)=\log_{10}(\log_{10}(\log_{10}x)), \quad \text{etc.}

Step-by-step conditions:

  1. For f1(x)=log10xf_1(x)=\log_{10}x:

    x>0.x>0.
  2. For f2(x)=log10(log10x)f_2(x)=\log_{10}(\log_{10}x):

    The argument must be positive:

    log10x>0    x>100=1.\log_{10}x>0 \implies x>10^0=1.

  3. For f3(x)=log10(log10(log10x))f_3(x)=\log_{10}(\log_{10}(\log_{10}x)):

    We require log10(log10x)>0    log10x>1    x>101=10.\log_{10}(\log_{10}x)>0 \implies \log_{10}x>1 \implies x>10^1=10.

  4. For f4(x)=log10(log10(log10(log10x)))f_4(x)=\log_{10}(\log_{10}(\log_{10}(\log_{10}x))):

    We need log10(log10(log10x))>0\log_{10}(\log_{10}(\log_{10}x))>0 which gives

    log10(log10x)>1    log10x>10    x>1010.\log_{10}(\log_{10}x)>1 \implies \log_{10}x>10 \implies x>10^{10}.

In general, if we denote the lower bound for xx needed for nn logarithms as an1a_{n-1}, the recursion is:

a0=0,a1=10a0=1,a2=10a1=10,a3=10a2=1010,a_0=0,\quad a_1=10^{a_0}=1,\quad a_2=10^{a_1}=10,\quad a_3=10^{a_2}=10^{10},\quad \ldots

So the domain is

x>1010\iddots10n1 times.x > \underbrace{10^{10^{\iddots^{10}}}}_{n-1\text{ times}}.

None of the options correctly represent the recursive tower of exponents obtained.