Solveeit Logo

Question

Question: The domain of the function \(y = \sqrt {\sin x + \cos x} + \sqrt {7x - {x^2} - 6} \) is \(\left[ {p,...

The domain of the function y=sinx+cosx+7xx26y = \sqrt {\sin x + \cos x} + \sqrt {7x - {x^2} - 6} is [p,qπ4][rπ4,s]\left[ {p,\dfrac{{q\pi }}{4}} \right] \cup \left[ {\dfrac{{r\pi }}{4},s} \right], then the value of p + q + r + s is

Explanation

Solution

Hint – In this question first use the concept that the domain of square root is greater than equal to 0, thus sinx+cosx0\sin x + \cos x \geqslant 0 and 7xx2607x - {x^2} - 6 \geqslant 0. For the terms involving trigonometric ratios convert them into the form sin(A+B)\sin \left( {A + B} \right) by multiplying and dividing sinx+cosx0\sin x + \cos x \geqslant 0 by 2\sqrt 2 . Solving the inequality will help to get the answer.

Complete step-by-step solution -
Given equation
y=sinx+cosx+7xx26y = \sqrt {\sin x + \cos x} + \sqrt {7x - {x^2} - 6}
Now to find out the domain the function which is in square root is always greater than or equal to zero.
sinx+cosx0\Rightarrow \sin x + \cos x \geqslant 0 ............. (1) and 7xx2607x - {x^2} - 6 \geqslant 0........................... (2)
Now first solve first equation we have,
sinx+cosx0\Rightarrow \sin x + \cos x \geqslant 0
Now multiply and divide by 2\sqrt 2 we have,
2(12×sinx+12×cosx)0\Rightarrow \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} \times \sin x + \dfrac{1}{{\sqrt 2 }} \times \cos x} \right) \geqslant 0
Now as we know that sin450=cos450=12\sin {45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}
2(cos45×sinx+sin45×cosx)0\Rightarrow \sqrt 2 \left( {\cos 45 \times \sin x + \sin 45 \times \cos x} \right) \geqslant 0
(cos450×sinx+sin450×cosx)0\Rightarrow \left( {\cos {{45}^0} \times \sin x + \sin {{45}^0} \times \cos x} \right) \geqslant 0
Now as we know that sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B so use this property in above equation we have,
sin(x+π4)0, [450=π4]\Rightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) \geqslant 0,{\text{ }}\left[ {\because {{45}^0} = \dfrac{\pi }{4}} \right]
Now as we know sinx0, x[0,π],[2π,3π],....\sin x \geqslant 0,{\text{ }}x \in \left[ {0,\pi } \right],\left[ {2\pi ,3\pi } \right],....
0(x+π4)π\Rightarrow 0 \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant \pi and 2π(x+π4)3π2\pi \leqslant \left( {x + \dfrac{\pi }{4}} \right) \leqslant 3\pi .................
π4xππ4\Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \pi - \dfrac{\pi }{4} and 2ππ4x3ππ42\pi - \dfrac{\pi }{4} \leqslant x \leqslant 3\pi - \dfrac{\pi }{4} .................
π4x3π4\Rightarrow - \dfrac{\pi }{4} \leqslant x \leqslant \dfrac{{3\pi }}{4} and 7π4x11π4\dfrac{{7\pi }}{4} \leqslant x \leqslant \dfrac{{11\pi }}{4}
x[π4,3π4],[7π4,11π4]\Rightarrow x \in \left[ { - \dfrac{\pi }{4},\dfrac{{3\pi }}{4}} \right],\left[ {\dfrac{{7\pi }}{4},\dfrac{{11\pi }}{4}} \right]................. (3)
Now consider equation (2) we have,
7xx260\Rightarrow 7x - {x^2} - 6 \geqslant 0
Now multiply by (-1) so the inequality sign reversed so we have,
7x+x2+60\Rightarrow - 7x + {x^2} + 6 \leqslant 0
x27x+60\Rightarrow {x^2} - 7x + 6 \leqslant 0
Now factorize this equation we have,
x2x6x+60\Rightarrow {x^2} - x - 6x + 6 \leqslant 0
x(x1)6(x1)0\Rightarrow x\left( {x - 1} \right) - 6\left( {x - 1} \right) \leqslant 0
(x1)(x6)0\Rightarrow \left( {x - 1} \right)\left( {x - 6} \right) \leqslant 0
x[1,6]\Rightarrow x \in \left[ {1,6} \right]............................. (4)
So the domain of the given equation is the intersection region of equation (3) and (4).
Now π4<1\dfrac{{ - \pi }}{4} < 1, 3π4>1\dfrac{{3\pi }}{4} > 1, 7π4<6\dfrac{{7\pi }}{4} < 6, 11π4>6\dfrac{{11\pi }}{4} > 6
Now the common region is shown in the above diagram so the domain of the given function is
[1,3π4][7π4,6]\Rightarrow \left[ {1,\dfrac{{3\pi }}{4}} \right] \cup \left[ {\dfrac{{7\pi }}{4},6} \right]
So on comparing with [p,qπ4][rπ4,s]\left[ {p,\dfrac{{q\pi }}{4}} \right] \cup \left[ {\dfrac{{r\pi }}{4},s} \right]
p=1,q=3,r=7,s=6\Rightarrow p = 1,q = 3,r = 7,s = 6
So the value of p + q + r + s is
p+q+r+s=1+3+7+6=17\Rightarrow p + q + r + s = 1 + 3 + 7 + 6 = 17
So this is the required answer.

Note – The domain of a function corresponds to the possible values of the independent variable that is x in this case, for which the entire function is defined. For example the domain of a quadratic function like ax2+bx+c=0a{x^2} + bx + c = 0 is xRx \in R as this quadratic is defined for any value of x belonging to real axis from to +- \infty {\text{ to }} + \infty.