Solveeit Logo

Question

Question: The domain of the function \(\sqrt{\log(x^{2} - 6x + 6)}\) is...

The domain of the function log(x26x+6)\sqrt{\log(x^{2} - 6x + 6)} is

A

(,)( - \infty,\infty)

B

(,33)(3+3,)( - \infty,3 - \sqrt{3}) \cup (3 + \sqrt{3},\infty)

C

(,1][5,)( - \infty,1\rbrack \cup \lbrack 5,\infty)

D

[0,)\lbrack 0,\infty)

Answer

(,1][5,)( - \infty,1\rbrack \cup \lbrack 5,\infty)

Explanation

Solution

The function f(x)=log(x26x+6)f(x) = \sqrt{\log(x^{2} - 6x + 6)} is defined when

log(x26x+6)0\log(x^{2} - 6x + 6) \geq 0

x26x+61x^{2} - 6x + 6 \geq 1(x5)(x1)0(x - 5)(x - 1) \geq 0

This inequality hold if x1x \leq 1 or x5x \geq 5. Hence, the domain of the function will be (,1][5,)( - \infty,1\rbrack \cup \lbrack 5,\infty).