Solveeit Logo

Question

Question: The domain of the function $f(z) = \log_e \left\{ \log_{|\sin x|} (x^2 - 8x + 23) - \frac{3}{\log_2 ...

The domain of the function f(z)=loge{logsinx(x28x+23)3log2sinx}f(z) = \log_e \left\{ \log_{|\sin x|} (x^2 - 8x + 23) - \frac{3}{\log_2 |\sin x|} \right\} contains which of the following interval/ intervals.

A

(3,π)(3, \pi)

B

(π,3π2)(\pi, \frac{3\pi}{2})

C

(3π2,5)(\frac{3\pi}{2}, 5)

D

None

Answer

A, B, C

Explanation

Solution

The function given is f(z)=loge{logsinx(x28x+23)3log2sinx}f(z) = \log_e \left\{ \log_{|\sin x|} (x^2 - 8x + 23) - \frac{3}{\log_2 |\sin x|} \right\}.

For f(z)f(z) to be defined, we must satisfy the following conditions:

  1. Argument of the outermost logarithm must be positive:
    Let Y=logsinx(x28x+23)3log2sinxY = \log_{|\sin x|} (x^2 - 8x + 23) - \frac{3}{\log_2 |\sin x|}. We need Y>0Y > 0.

  2. Base of the inner logarithms must be positive and not equal to 1:
    sinx>0    sinx0    xnπ|\sin x| > 0 \implies \sin x \neq 0 \implies x \neq n\pi for any integer nn.
    sinx1    sinx±1    x(2n+1)π2|\sin x| \neq 1 \implies \sin x \neq \pm 1 \implies x \neq (2n+1)\frac{\pi}{2} for any integer nn.
    Combining these, xmπ2x \neq \frac{m\pi}{2} for any integer mm.

  3. Argument of the inner logarithm must be positive:
    x28x+23>0x^2 - 8x + 23 > 0.
    To check this quadratic, consider its discriminant D=(8)24(1)(23)=6492=28D = (-8)^2 - 4(1)(23) = 64 - 92 = -28.
    Since D<0D < 0 and the leading coefficient (1) is positive, the quadratic x28x+23x^2 - 8x + 23 is always positive for all real xx. This condition is satisfied for all xRx \in \mathbb{R}.

Now, let's simplify the expression YY:
Y=logsinx(x28x+23)3log2sinxY = \log_{|\sin x|} (x^2 - 8x + 23) - \frac{3}{\log_2 |\sin x|}
Using the change of base formula for logarithms, 1logab=logba\frac{1}{\log_a b} = \log_b a.
So, 1log2sinx=logsinx2\frac{1}{\log_2 |\sin x|} = \log_{|\sin x|} 2.
Substitute this into the expression for YY:
Y=logsinx(x28x+23)3logsinx2Y = \log_{|\sin x|} (x^2 - 8x + 23) - 3 \log_{|\sin x|} 2
Using the logarithm property klogba=logbakk \log_b a = \log_b a^k:
Y=logsinx(x28x+23)logsinx23Y = \log_{|\sin x|} (x^2 - 8x + 23) - \log_{|\sin x|} 2^3
Y=logsinx(x28x+23)logsinx8Y = \log_{|\sin x|} (x^2 - 8x + 23) - \log_{|\sin x|} 8
Using the logarithm property logbAlogbB=logb(AB)\log_b A - \log_b B = \log_b \left(\frac{A}{B}\right):
Y=logsinx(x28x+238)Y = \log_{|\sin x|} \left( \frac{x^2 - 8x + 23}{8} \right)

We need Y>0Y > 0, so logsinx(x28x+238)>0\log_{|\sin x|} \left( \frac{x^2 - 8x + 23}{8} \right) > 0.
From condition 2, we know that 0<sinx<10 < |\sin x| < 1 (since sinx|\sin x| cannot be greater than 1).
When the base bb of a logarithm logbA\log_b A is between 0 and 1 (0<b<10 < b < 1), the logarithm function is decreasing. Therefore, logbA>0\log_b A > 0 implies A<b0A < b^0, which means A<1A < 1.
Applying this to our inequality:
x28x+238<1\frac{x^2 - 8x + 23}{8} < 1
x28x+23<8x^2 - 8x + 23 < 8
x28x+15<0x^2 - 8x + 15 < 0
Factor the quadratic: (x3)(x5)<0(x-3)(x-5) < 0.
This inequality holds when xx is between the roots, i.e., 3<x<53 < x < 5.

Finally, we must combine this interval (3,5)(3, 5) with the restrictions from condition 2 (xmπ2x \neq \frac{m\pi}{2}).
In the interval (3,5)(3, 5):

  • π3.14159\pi \approx 3.14159. Since 3<π<53 < \pi < 5, we must exclude x=πx = \pi.
  • 3π24.71239\frac{3\pi}{2} \approx 4.71239. Since 3<3π2<53 < \frac{3\pi}{2} < 5, we must exclude x=3π2x = \frac{3\pi}{2}.

No other values of mπ2\frac{m\pi}{2} fall within the interval (3,5)(3, 5). (e.g., π21.57\frac{\pi}{2} \approx 1.57, 2π6.282\pi \approx 6.28)

Therefore, the domain of the function f(z)f(z) is (3,5)(3, 5) excluding π\pi and 3π2\frac{3\pi}{2}.
This can be written as the union of three intervals: (3,π)(π,3π2)(3π2,5)(3, \pi) \cup (\pi, \frac{3\pi}{2}) \cup (\frac{3\pi}{2}, 5).

Now, let's check the given options:
A (3,π)(3, \pi): This interval is a part of the calculated domain.
B (π,3π2)(\pi, \frac{3\pi}{2}): This interval is a part of the calculated domain.
C (3π2,5)(\frac{3\pi}{2}, 5): This interval is a part of the calculated domain.
D None: This is incorrect as A, B, and C are all valid parts of the domain.

The question asks "contains which of the following interval/ intervals", implying that multiple options can be correct. All three intervals listed in options A, B, and C are contained within the domain of the function.