Solveeit Logo

Question

Question: The domain of the function \(f(x) = \sqrt{x - x^{2}} + \sqrt{4 + x} + \sqrt{4 - x}\) is...

The domain of the function f(x)=xx2+4+x+4xf(x) = \sqrt{x - x^{2}} + \sqrt{4 + x} + \sqrt{4 - x}

is

A

[4,)\lbrack - 4,\infty)

B

[4,4]\lbrack - 4,4\rbrack

C

[0,4]\lbrack 0,4\rbrack

D

[0,1]\lbrack 0,1\rbrack

Answer

[0,1]\lbrack 0,1\rbrack

Explanation

Solution

f(x)=xx2+4+x+4xf(x) = \sqrt{x - x^{2}} + \sqrt{4 + x} + \sqrt{4 - x}

clearly f(x)f(x) is defined if

4+x04 + x \geq 0x4x \geq - 4

4x04 - x \geq 0x4x \leq 4

x(1x)0x(1 - x) \geq 0x0x \geq 0 and x1x \leq 1

∴ Domain of f=(,4][4,)[0,1]=[0,1]f = ( - \infty,4\rbrack \cap \lbrack - 4,\infty) \cap \lbrack 0,1\rbrack = \lbrack 0,1\rbrack.