Solveeit Logo

Question

Mathematics Question on Functions

The domain of the function f(x)=cosxf(x) = \sqrt {\cos x} is

A

[0,π2]\left[0, \frac {\pi}{2}\right]

B

[0,π2][3π2,2π]\left[0, \frac {\pi}{2}\right] \cup \left[\frac {3 \pi}{2},2\pi \right]

C

[3π2,2π]\left[\frac {3 \pi}{2},2\pi \right]

D

[π2,π2]\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]

Answer

[0,π2][3π2,2π]\left[0, \frac {\pi}{2}\right] \cup \left[\frac {3 \pi}{2},2\pi \right]

Explanation

Solution

The correct answer is B:[0,π2][3π2,2π][0,\frac{\pi}{2}]\cup[\frac{3\pi}{2},2\pi]
Given that;
f(x)=cosxf(x)=\sqrt{cosx}
\therefore cosx0cosx≥0
i.e., x[2nπ+0,2nπ+π2][2nπ+3π2,2nπ+2π]x\in[2n\pi+0,2n\pi+\frac{\pi}{2}]\cup[2n\pi+\frac{3\pi}{2},2n\pi+2\pi]
where,nzn\in{z}
For n=0
x[0,π2[3π2,2π]x\in[0,\frac{\pi}{2}\cup[\frac{3\pi}{2},2\pi]
domain