Solveeit Logo

Question

Mathematics Question on Relations and functions

The domain of the function
f(x)=sin1(x23x+2x2+2x+7)f(x) = \sin^{-1}\left(\frac{x^2 - 3x + 2}{x^2 + 2x + 7}\right)
is :

A

[1,)[1,∞)

B

[1,2][−1,2]

C

[1,)[−1,∞)

D

(,2](−∞,2]

Answer

[1,)[−1,∞)

Explanation

Solution

f(x)=sin1(x23x+2x2+2x+7)f(x) = \sin^{-1}\left(\frac{x^2 - 3x + 2}{x^2 + 2x + 7}\right)
1x23x+2x2+2x+71-1 \leq \frac{x^2 - 3x + 2}{x^2 + 2x + 7} \leq 1
x23x+2x2+2x+71\frac{x^2 - 3x + 2x}{2 + 2x + 7} \leq 1
x23x+2x2+2x+7x^2−3x+2≤x^2+2x+7
5x55x≥−5
x1(i)x≥−1 …(i)
x23x+2x2+2x+71\frac{x^2 - 3x + 2}{x^2 + 2x + 7} \geq -1
x23x+2x22x7x^2−3x+2≥−x^2−2x−7
2x2x+902x^2−x+9≥0
xR(ii)x∈R …(ii)
(i)(ii)(i)∩(ii)
Domain[1,)Domain ∈ [−1,∞)
So, the correct option is (C): [1,)[−1,∞)