Solveeit Logo

Question

Question: The domain of the function \(f(x) = {\log _2}[{\log _3}({\log _4}x)]\) is 1) \(( - \infty ,4)\) ...

The domain of the function f(x)=log2[log3(log4x)]f(x) = {\log _2}[{\log _3}({\log _4}x)] is

  1. (,4)( - \infty ,4)
  2. (4,)(4,\infty )
  3. (0,4)(0,4)
  4. (1,)(1,\infty )
  5. (,1)( - \infty ,1)
Explanation

Solution

The domain of a function is the set of all possible inputs for the function . The logarithm is the inverse function to exponentiation. To solve this problem you should use log property .
As, logx>0\log x > 0 (where x is always positive )

Complete step-by-step solution:
Function - log2[log3(log4x)]{\log _2}[{\log _3}({\log _4}x)]
log4x{\log _4}x; x>0x > 0
xx should be always positive
Let log4x{\log _4}x be t
log3t{\log _3}t; t>0t > 0
As, t>0t > 0 where t is log4x{\log _4}x
So, log4x>0{\log _4}x > 0
log4x>0{\log _4}x > 0
The base 4 of log will shift towards right side
x>40x > {4^0}
x>1x > 1
log2[log3(log4x)]{\log _2}[{\log _3}({\log _4}x)]
Let log3(log4x){\log _3}({\log _4}x) be m
log2m{\log _2}m where m>0m > 0
As, m>0m > 0 where m is log3(log4x){\log _3}({\log _4}x)
So log3(log4x)>0{\log _3}({\log _4}x) > 0
log3(log4x)>0{\log _3}({\log _4}x) > 0
The base 3 of log will shift towards right side
log4x>30{\log _4}x > {3^0}
log4x>1{\log _4}x > 1
The base 4 of log will shift towards right side
x>41x > {4^1}
x>4x > 4
Intersection of all the values of x s
Therefore the domain of the function is
x>0x > 0 , x>1x > 1 , x>4x > 4
Domain - x(4,)x \in (4,\infty )
Option (2) is correct

Note: The range of function is the set of output of the function achieved when it is applied to its whole set of the output. As we know in logx\log x x>0x > 0. and the x is always positive . First we compared log4x{\log _4}x from zero then which gave x>1x > 1 then we compared log3(log4x){\log _3}({\log _4}x) from zero which gave x>4x > 4.