Solveeit Logo

Question

Mathematics Question on Functions

The domain of the function f \left(x\right)=\frac{1}{\sqrt{\left\\{sin\,x\right\\}+\left\\{sin\left(\pi+x\right)\right\\}}} where \\{\cdot \\} denotes fractional part, is

A

[0[0, π]\pi]

B

(2n+1)π/2(2n + 1)\pi/2, nZn \in Z

C

(0(0, π)\pi)

D

None of these

Answer

None of these

Explanation

Solution

f \left(x\right)=\frac{1}{\sqrt{\left\\{sin\,x\right\\}+\left\\{sin\left(\pi+x\right)\right\\}}} =\frac{1}{\sqrt{\left\\{sin\,x\right\\}+\left\\{-sin\,x\right\\}}} Now, \left\\{sin x\right\\}+\left\\{-sinx\right\\} = \begin{cases} 0, & \text{if sin,xis integer} \\\[2ex] 1, & \text{ifsin,x is not integer} \end{cases} Forf(x) f(x) to be defined, sinx+sinx0\\{sinx\\} + \\{-sinx\\} \neq 0 sinx\Rightarrow sinx \neq integer sinx±1\Rightarrow sinx \ne \pm1, 00 xnπ2\Rightarrow x \ne\frac{n\pi}{2} Hence, domain is R-\left\\{\frac{n\pi}{2}, n\in I\right\\}.