Question
Mathematics Question on Functions
The domain of the function f \left(x\right)=\frac{1}{\sqrt{\left\\{sin\,x\right\\}+\left\\{sin\left(\pi+x\right)\right\\}}} where ⋅ denotes fractional part, is
A
[0, π]
B
(2n+1)π/2, n∈Z
C
(0, π)
D
None of these
Answer
None of these
Explanation
Solution
f \left(x\right)=\frac{1}{\sqrt{\left\\{sin\,x\right\\}+\left\\{sin\left(\pi+x\right)\right\\}}} =\frac{1}{\sqrt{\left\\{sin\,x\right\\}+\left\\{-sin\,x\right\\}}} Now, \left\\{sin x\right\\}+\left\\{-sinx\right\\} = \begin{cases} 0, & \text{if sin,xis integer} \\\[2ex] 1, & \text{ifsin,x is not integer} \end{cases} Forf(x) to be defined, sinx+−sinx=0 ⇒sinx= integer ⇒sinx=±1, 0 ⇒x=2nπ Hence, domain is R-\left\\{\frac{n\pi}{2}, n\in I\right\\}.