Solveeit Logo

Question

Mathematics Question on Functions

The domain of the function f(x)=1+2(x+4)0.52(x+4)0.5+5(x+4)0.5f\left(x\right)=\frac{1+2\left(x+4\right)^{-0.5}}{2-\left(x+4\right)^{0.5}}+5\left(x+4\right)^{0.5} is

A

RR

B

(4,4)(-4, 4)

C

(0,)\left(0, \infty\right)

D

(4,0)(0,)\left(-4, 0\right) \cup\left(0, \infty\right)

Answer

(4,0)(0,)\left(-4, 0\right) \cup\left(0, \infty\right)

Explanation

Solution

f(x)=1+2(x+4)0.52(x+4)0.5+5(x+4)0.5f\left(x\right)=\frac{1+2\left(x+4\right)^{-0.5}}{2-\left(x+4\right)^{0.5}}+5\left(x+4\right)^{0.5} =1+21x+42x+4+5x+4=x+4+2x+4(2x+4)+5x+4=\frac{1+2\cdot \frac{1}{\sqrt{x+4}}}{2-\sqrt{x+4}}+5 \sqrt{x+4}=\frac{\sqrt{x+4}+2}{\sqrt{x+4}\left(2-\sqrt{x+4}\right)}+5\sqrt{x+4} f(x)f\left(x\right) is defined if x+4>0x + 4 > 0 and 2x+402-\sqrt{x+4}\ne 0. f(x)\therefore f\left(x\right) is defined if x>\-4x >\- 4 and x0x \ne 0 D(f)=(4,0)(0,)\therefore D\left(f\right)=\left(-4,0\right) \cup\left(0, \infty\right).