Solveeit Logo

Question

Mathematics Question on Relations and functions

The domain of the function f(x)=log2(x+3)x2+3x+2f \left(x\right)=\frac{\log_{2}\left(x+3\right)}{x^{2}+3x+2} is

A

R1,2R - \\{ -1,-2 \\}

B

R1,2,0R -\\{ -1,-2 ,0 \\}

C

(3,1)(-3 ,-1) \cup (1,)(-1, \infty)

D

(3,)1,2(-3, \infty) - \\{-1,-2\\}

Answer

(3,)1,2(-3, \infty) - \\{-1,-2\\}

Explanation

Solution

Given function is f(x)=log2(x+3)x2+3x+2f(x)=\frac{\log _{2}(x+3)}{x^{2}+3 x+2}
Here, for existence of log
x+3>0x+3>\,0
x>3\Rightarrow x >\, -3
x(3,)\Rightarrow\, x \in(-3, \infty)
and for existence of f(x)f(x),
x2+3x+20x^{2}+3 x+ 2 \, \neq 0
(x+1)(x+2)0\Rightarrow \,(x+1)(x+2) \neq 0
x1,2\Rightarrow \, x \neq-1,-2
Hence, required domain of f(x)f(x) is
(3,)1,2(-3, \infty)-\\{-1,-2\\}