Question
Question: The domain of the function \[f\left( x \right)=\dfrac{\left( \sqrt{-\log _{0.3}^{\left( x-1 \right)}...
The domain of the function f(x)=(−x2+2x+8)(−log0.3(x−1))
1.(1,4)
2.(−2,4)
3.[2,4)
4. None of these
Solution
In order to find the domain of the given function f(x)=(−x2+2x+8)(−log0.3(x−1)), firstly, we will be finding the roots of the given quadratic equation. Then we will be checking for the function at which they are defined for f. Then upon checking for them, we will be obtaining the domain of the function.
Complete step-by-step solution:
Now let us learn about the domain and range of functions. A domain of a function f(x)is the set of all values for which the function is defined and the range of the function is the set of all values that f takes. We can also define the special functions whose domains are limited. The natural domain of a function is the set of all allowable input values. Natural domain is basically the x values for which the function is defined. 'Domain' or 'restricted domain' is 'man-made' .
Now let us find the domain of the given function i.e. f(x)=(−x2+2x+8)(−log0.3(x−1))
Now let us find the roots of the equation (−x2+2x+8)