Solveeit Logo

Question

Question: The domain of the derivative of the function f(x) = \(\left\{ \begin{matrix} \tan^{- 1}x & if|x| \l...

The domain of the derivative of the function f(x)

= {tan1xifx112(x1)ifx>1 \left\{ \begin{matrix} \tan^{- 1}x & if|x| \leq 1 \\ \frac{1}{2}\left( |x| - 1 \right) & if|x| > 1 \end{matrix} \right.\ is

A

R − {0}

B

R − {1}

C

R − {−1}

D

R − {−1, 1}

Answer

R − {−1, 1}

Explanation

Solution

The given function is

f(x) = {tan1xifx112(x1)ifx>1 \left\{ \begin{matrix} \tan^{- 1}x & if|x| \leq 1 \\ \frac{1}{2}\left( |x| - 1 \right) & if|x| > 1 \end{matrix} \right.\

⇒ f(x) = {12(x1)tan1x12(x1) ifx<1if1x1ififx>1\left\{ \begin{matrix} \frac{1}{2}( - x - 1) \\ \tan^{- 1}x \\ \frac{1}{2}(x - 1) \end{matrix} \right.\ \begin{matrix} ifx < - 1 \\ if - 1 \leq x \leq 1 \\ ififx > 1 \end{matrix}

Clearly L.H.L. at (x = −1) = limh0f(1h)\lim_{h \rightarrow 0}f( - 1 - h)

R.H.L. at (x = −1) = limh0f(1+h)=limh0tan1(1+h)\lim_{h \rightarrow 0}f( - 1 + h) = \lim_{h \rightarrow 0}\tan^{- 1}( - 1 + h)

= −3 π/4

∴ L.H.L. ≠ R.H.L. at x = −1

∴ f(x) is discontinuous at x = − 1

Also we can prove in the same way, that f(x) is discontinuous at x = 1

∴ f’(x) can not be found for x = ±\pm1 or domain of f’(x)

= R−{−1, 1}