Question
Question: The domain of the derivative of the function \(f(x) = \left\{ \begin{matrix} \tan^{- 1}x & , & |x| ...
The domain of the derivative of the function
f(x)={tan−1x21(∣x∣−1),,∣x∣≤1∣x∣>1 is
A
R−{0}
B
R−{1}
C
R−{−1}
D
R−{−1,1}
Answer
R−{−1}
Explanation
Solution
f(x)=⎩⎨⎧21(−x−1),x<−1tan−1x,−1≤x≤121(x+1),x>1 ⇒
& - \frac{1}{2},x < - 1 \\ & \frac{1}{1 + x^{2}}, - 1 < x < 1 \\ & \frac{1}{2},x > 1 \end{aligned} \right.\ $$ $f ^ { \prime } ( - 1 - 0 ) = - \frac { 1 } { 2 } ; f ^ { \prime } ( - 1 + 0 ) = \frac { 1 } { 1 + ( - 1 + 0 ) ^ { 2 } } = \frac { 1 } { 2 }$ $f^{'}(1 - 0) = \frac{1}{1 + (1 - 0)^{2}} = \frac{1}{2};f^{'}(1 + 0) = \frac{1}{2}$ ∴$f^{'}( - 1)$ does not exist. ∴domain of $f^{'}(x) = R - \{ - 1\}$.