Solveeit Logo

Question

Question: The domain of \({\sin ^{ - 1}}\left( {\ln x} \right)\) is A. \(\left[ {\dfrac{1}{e},e} \right]\) ...

The domain of sin1(lnx){\sin ^{ - 1}}\left( {\ln x} \right) is
A. [1e,e]\left[ {\dfrac{1}{e},e} \right]
B. (1e,2]\left( {\dfrac{1}{e},2} \right]
C. (0,)\left( {0,\infty } \right)
D. (,0]\left( { - \infty ,0} \right]

Explanation

Solution

Hint: We first determine the range of sinx\sin x, hence finding the domain of sin1(x){\sin ^{ - 1}}\left( x \right). Next, find the values of xx which satisfy the domain of sin1(x){\sin ^{ - 1}}\left( x \right). From those values of xx, find the values that will satisfy the domain of lnx\ln x, as x>0x > 0 for lnx\ln x.

Complete step by step answer:

First of all, determine the range of sinx\sin x.
As sinx\sin x can take values from 1 - 1 to 1 only, therefore, the range of sinx\sin x is 1x1 - 1 \leqslant x \leqslant 1.
Therefore, the domain of sin1(x){\sin ^{ - 1}}\left( x \right) is 1x1 - 1 \leqslant x \leqslant 1.
In this question, we are given sin1(lnx){\sin ^{ - 1}}\left( {\ln x} \right), then the value of lnx\ln x will be from 1 - 1 to 1, that implies,
1lnx1- 1 \leqslant \ln x \leqslant 1
Solve for xx in the above inequality.
As we know, lnam=beb=a\ln {a^m} = b \Rightarrow {e^b} = a
Therefore, 1lnx1 - 1 \leqslant \ln x \leqslant 1 can be written as, e1xe{e^{ - 1}} \leqslant x \leqslant e which is equivalent to 1exe\dfrac{1}{e} \leqslant x \leqslant e
Now, eliminate those values of xx which are negative because lnx\ln xis only defined for values x>0x > 0.
In 1exe\dfrac{1}{e} \leqslant x \leqslant e, all values of xx are positive. Hence, the domain of sin1(lnx){\sin ^{ - 1}}\left( {\ln x} \right) is 1exe\dfrac{1}{e} \leqslant x \leqslant e which can be written as [1e,e]\left[ {\dfrac{1}{e},e} \right]
Therefore, option A is correct.

Note: The domain of sin1(x){\sin ^{ - 1}}\left( x \right) is [1,1]\left[ { - 1,1} \right] and the range of sin1(x){\sin ^{ - 1}}\left( x \right) is [π2,π2]\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]. The domain of lnx\ln xis (0,)\left( {0,\infty } \right) and the range of lnx\ln x is (,)\left( { - \infty ,\infty } \right). Therefore., after calculating the values of lnx\ln x, take only those values of xx which belongs to the domain of lnx\ln x.