Solveeit Logo

Question

Question: The domain of f(x) = \(\sqrt{\log_{\frac{1}{4}}\left( \frac{5x - x^{2}}{4} \right)} ⥄ ⥄\)+ <sup>10</...

The domain of f(x) = log14(5xx24)⥄⥄\sqrt{\log_{\frac{1}{4}}\left( \frac{5x - x^{2}}{4} \right)} ⥄ ⥄+ 10Cx is

A

(0, 1]U [4, 5)

B

(0, 5)

C

{1, 4}

D

None of these

Answer

{1, 4}

Explanation

Solution

Let f1 = log14(5xx24)\sqrt{\log_{\frac{1}{4}}\left( \frac{5x - x^{2}}{4} \right)} and f2 = 10Cx.

Clearly f1 is defined for log14(5xx24)\log_{\frac{1}{4}}\left( \frac{5x - x^{2}}{4} \right) ≥ 0

⇒ 0 < 5xx24\frac{5x - x^{2}}{4} ≤ 1

5xx24\frac{5x - x^{2}}{4} > 0 and 5xx24\frac{5x - x^{2}}{4} ≤ 1

⇒ x (x – 5) < 0 and x2 – 5x + 4 ≥ 0

⇒ x\in (0, 5) and x\in (-\infty, 1]U [4, \infty)

⇒ f1 is defined for x\in (0, 1] U [4, 5) and f2 is defined for x \in{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ⇒ f(x) is defined for x\inDf1 \cap Df2 = {1, 4}