Solveeit Logo

Question

Question: The domain of \(f(x)\) is \((0,1)\) , therefore, the domain of \(y = f({e^x}) + f(\ln |x|)\) is: A...

The domain of f(x)f(x) is (0,1)(0,1) , therefore, the domain of y=f(ex)+f(lnx)y = f({e^x}) + f(\ln |x|) is:
A) (1e,1)\left( {\dfrac{1}{e},1} \right)
B) (e,1)\left( { - e, - 1} \right)
C) (1,1e)\left( { - 1, - \dfrac{1}{e}} \right)
D) (e,1)(1,e)\left( { - e, - 1} \right) \cup \left( {1,e} \right)

Explanation

Solution

We will first find the individual domain of all the given functions individually, after that we will find the intersection of the domain so that it becomes a common domain for all the functions. Hence, the intersection of the domains would be the final answer.

Complete step by step solution:
We are given that the domain of f(x)f(x) is (0,1)(0,1) , hence
0<x<1\Rightarrow 0 < x < 1 … (1)
For the function y=f(ex)+f(lnx)y = f({e^x}) + f(\ln |x|) ,
For f1(x)=ex{f_1}(x) = {e^x} , we get
0<ex<1\Rightarrow 0 < {e^x} < 1 … (2)
According to the graph e=0{e^{ - \infty }} = 0 and e0=1{e^0} = 1 , hence
<x<0\Rightarrow - \infty < x < 0
Hence domain of f1(x)=ex{f_1}(x) = {e^x} is
D1=(,0)\Rightarrow {D_1} = ( - \infty ,0)
Now, for f2(x)=lnx{f_2}(x) = \ln |x| , we get
0<lnx<1\Rightarrow 0 < \ln |x| < 1 … (2)
Taking Euler's number in (2), we get
e0<elnx<e1\Rightarrow {e^0} < {e^{\ln |x|}} < {e^1}
On substituting e0=1{e^0} = 1 , e1=e{e^1} = e and eln(a)=a{e^{\ln (a)}} = a , we get
1<x<e\Rightarrow 1 < |x| < e
Since the domain of a<x<ba < |x| < b is
D=(b,a)(a,b)D = ( - b, - a) \cup (a,b)
Hence domain of f2(x)=lnx{f_2}(x) = \ln |x| is
D2=(e,1)(1,e){D_2} = ( - e, - 1) \cup (1,e)
Hence, the final domain of the function
y=D1D2y = {D_1} \cap {D_2}
On substituting the values of domains, we get
(,0)((e,1)(1,e))\Rightarrow ( - \infty ,0) \cap (( - e, - 1) \cup (1,e))
According to distributive property, we get
((,0)(e,1))((,0)(1,e))\Rightarrow (( - \infty ,0) \cap ( - e, - 1)) \cup (( - \infty ,0) \cap (1,e))
Since nothing is common between (,0)( - \infty ,0) and (1,e)(1,e) , hence
(,0)(1,e)=0\Rightarrow ( - \infty ,0) \cap (1,e) = 0
Therefore
(,0)(e,1)\Rightarrow ( - \infty ,0) \cap ( - e, - 1)
Since the whole set (e,1)( - e, - 1) is present in (,0)( - \infty ,0) , hence
(,0)(e,1)=(e,1)\Rightarrow ( - \infty ,0) \cap ( - e, - 1) = ( - e, - 1)
Hence, the final domain is (e,1)( - e, - 1)

Therefore, the final answer is B.

Note:
We can also find the intersection of domains by the number line method, consider a number line where numbers are present from - \infty to ++ \infty , Only marks the places where all the domains are present, hence make sets of the required answer to get the final answer.