Solveeit Logo

Question

Mathematics Question on Functions

The domain of f(x)=12x11x2f\left(x\right) = \frac{1}{\sqrt{2x -1}} - \sqrt{1-x^{2}} is :

A

[12,1]\bigg[ \frac{1}{2} , 1 \bigg]

B

[- 1, \infty]

C

[ 1, \infty]

D

none of these

Answer

[12,1]\bigg[ \frac{1}{2} , 1 \bigg]

Explanation

Solution

Given, f(x)=12x11x2f\left(x\right) = \frac{1}{\sqrt{2x -1}} - \sqrt{1-x^{2}} =p(x)q(x)= p\left(x\right)-q\left(x\right) where p(x)=12x1p\left(x\right) = \frac{1}{\sqrt{2x-1}} and q(x)=1+x2q\left(x\right) = \sqrt{1+x^{2}} Now, Domain of p(x) exist when 2x102x - 1 \ne 0 x=12 \Rightarrow x = \frac{1}{2} and 2x1>0 2x -1 >0 x=12\Rightarrow x = \frac{1}{2} and x>12x > \frac{1}{2} x(12,)\therefore x \in\left(\frac{1}{2} , \infty\right) and domain of q(x) exists when 1x20x21x1\Rightarrow 1 -x^{2} \ge0 \Rightarrow x^{2 } \le1 \Rightarrow \left|x\right| \le1 1x1\therefore -1 \le x \le1 \therefore Common domain is ]12,1[\bigg] \frac{1}{2} , 1 \bigg[